

1 2

AN OPC DATA ACCESS SERVER DESIGNED FOR LARGE

NUMBER OF ITEMS

Aleksandar ERDELJAN, Nebojša TRNINIĆ, Darko ČAPKO

FACULTY OF ENGINEERING, NOVI SAD

Abstract - Servers that support OPC specifications are part of big
distributed control systems of SCADA systems nowadays. The paper
describes the design of an OPC Data Access server which has an
address space that contains tens of thousands of items. Two scenarios
are considered. The first design approach takes into consideration a big
number of clients, and in the second approach, the number of
concurrent clients is small but quick server response is expected. In
both cases it is assumed that all clients are interested in all server
items. It is also assumed that item values rarely change. Server
response time, processor workload and memory usage are considered.

1. INTRODUCTION

The OPC (OLE for Process Control) technology helps to open

connectivity software for automation, IT and enterprise-wide
management environments [1]. It provides a common way for
applications to access data from any data source, e.g. a device on the
factory floor or a database. The information architecture for the Process
Industry involves field management, process management and
business management levels. Providing information in a consistent
manner to client applications, regardless of the management level,
minimizes the effort required to provide the integration. So far,
hundreds of plants and thousands of applications already depend on
OPC solutions and some of them involve huge number of items.

OPC is based on Microsoft's OLE/COM technology [2]. Overall
architecture utilizes DCOM technology (distributed COM) to facilitate
clients interfacing to remote servers and to communicate the data to
any client application in a standard way. To eliminate the need for
custom interfaces between disparate computing solutions, the OPC
interfaces are given in the specifications.

OPC Data Access (DA) is a specification that deals with online data
access [3]. It is designed primarily to take snapshots of current real
time process or automation data and to allow efficient reading and
writing of data between an application and a data source like process
control device. It specifies the behavior that the interfaces are expected
to provide to the client applications that use them, but leaves the
implementation of those interfaces to the programmer. Therefore, the
design and implementation of such interfaces varies from one server
implementation to another.

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2003 TOME I. Fascicole 3

In practice, when OPC DA Server method calls are observed,
except Read and Write methods, all the other server (and group)
methods are called rarely. If we assume that the clients are subscribed
to data updates, then a single call to a Write method, issued by any
client, results in a number of update calls to all the clients in order to
refresh their item values. The server acts in a similar way when new
values arrive from a data source. This paper is focused on client update
process inside the server; because it is a time-consuming process and
it can significantly increase the CPU workload. Therefore, only a part of
server design that concerns client updates is presented. UML notation is
used and few class diagrams and sequence diagrams are given to clarify
the design.

2. SERVER DESIGN

The OPC DA specification describes the COM objects and their

interfaces that should be implemented in an OPC server. At a high level,
an OPC DA Server comprises of several objects: the server, the group,
and the item. Picture 1 shows the design where CGroup class
encapsulates OPC Group and implements its interfaces; C Server class is
introduced as a type of OPC Server object to implement OPC Server
interfaces and to serve as a container for OPC group objects. From the
custom interface perspective, an OPC Item is not accessible as an
object by any client.

Therefore, there is no external interface defined for an OPC item.
Every access to items is via an OPC Group object that contains
references to item definitions. Within each CGroup the client can define
one or more item references, which provides a way for clients to
organize data. An instance of CGroupCache class is used by CGroup
object to contain and logically organize such items. It also keeps
copies of all item values that were sent to the client. Such copies are
needed for the server to compare newly obtained values with the values
which have already been sent to the client, to avoid unnecessary
communication with the client.

In a typical application many clients concurrently communicate with
the server and each of them expects the server to maintain its
particular information. Therefore, an instance of CServer object is
created every time a client connects to the server. All CServer objects
are kept in a container CServerContainer. So far, the design presented
here reflects the basic OPC architecture and it is expected to be found in
almost any DA server.

 84

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2003 TOME I. Fascicole 3

PICTURE 1. CLASS DIAGRAMM

PICTURE 2. SEQUENCE DIAGRAM - PERIODIC UPDATE OF OPC GROUP CACHE

To improve performance when a number of clients is

concurrently using the server, it is suggested that server
implementation should read data into some sort of "cache", which should
reflect the latest values of all items [3]. CCache object is introduced to
contain and logically organize all items in the server and CGroup is
aware of it. There are several ways for a client to obtain cached item
data from the server. Client can perform either a synchronous or
asynchronous read from the cache via CGroup (simple and reasonably
efficient), but this might be appropriate for clients that are reading
relatively small amounts of data and where maximum efficiency is not a
concern, which is not observed in this paper. "Event driven" based
connections can also be created between the client and the items in the
group. This is a more efficient and complex way. It uses the callback
mechanism when the client subscribes to changes in data. The clients
which are considered are implemented to use the callback mechanism
(IOPCDataCallback: :OnDataChange()).

In order to model polling or event driven CCache and CGroupCache
updates inside of the server, abstract class CUpdate is introduced. It
enables implementation of particular update techniques in derived
classes: CScanUpdate and CEventUpdate. Later, two Update methods
specialized by CScanUpdate and CEventUpdate classes will be described.
CGroup class aggregates an instance of CUpdate object and each call to
UpdateClient method is delegated to CUpdate::Update (Picture 2). An
OPC client can configure the rate at which an OPC Group should provide

 85

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2003 TOME I. Fascicole 3

data changes. CUpdateRequest object executes updates (requests) at
given times. It is implemented as "concrete command" from the
command pattern [4].

PICTURE 3. CLASS DIAGRAM - SERVER CACHE

An important part of any DA server is server level cache, which

should contain latest known values taken from data source(s). Server
cache can be updated in different ways: by periodical scans of data
sources, i.e. polling, or event driven method that receives events sent
from data source. Picture 3 shows the class diagram of server cache.
CItem class represents OPC Items at the server level, and among
other attributes it contains the last known item value. CItemSource and
CScan classes are used for periodical cache updates from data source,
i.e. CDevice. Sequence diagram (Picture 4) shows periodical scans of
data source and updates of server cache and clients (at the very end).
When data is read from device, Ccache::OnEvent() method is called to
update values in CItem objects. In case of an event driven solution,
when device detects a new item value it could call OnEvent method
directly (not shown in the picture).

PICTURE 4. SEQUENCE DIAGRAM OF PERIODIC SERVER CACHE UPDAT

 86

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2003 TOME I. Fascicole 3

3. SOLUTION A: CLIENT (OPC GROUP) CACHE UPDATES
BASED ON PERIODICAL SCANS

Item values in CGroupCache object can be updated by periodical

comparison of all values in the group cache with values from the server
cache. CScanUpdate object performs comparison in time instances
determined by update rate attribute (CUpdateRequest: :updateRate).
According to sequence diagram shown in Picture 5, values are compared
in UpdateCache method and then group cache is updated and
OnDataChange method is called to send new values to the client.
Additional client parameter "percent deadband", prevents sending of
values that are not changed over the given limits. This keeps the
amount of data sent to the client small, when item values are changed
rarely.

PICTURE 5. SEQUENCE DIAGRAM - PERIODICAL CLIENT CACHE UPDATE

4. SOLUTION B: CLIENT (OPC GROUP) CACHE
UPDATES BASED ON EVENTS

When fresh item value is taken from data source, it is written into

the server cache. If the cache object is aware of all OPC groups
registered by clients, then new item value can be sent to all CGroup
objects immediately. Comparison of new item values with old values
which are stored in CGroupCache objects occurs, but sending changed
values to remote clients may be a lengthy process, which involves calls
to clients' callback functions. Therefore, a kind of buffer is introduced. A
queue object is assigned to each CEventUpdate object and all new
values which arrive, are put into such queues (values of items not
registered in a group are ignored). Such behavior is shown in Picture 6.
Later, values are taken from queue by a separate thread of execution;
they are compared with values from CGroupCache object and are either
sent to the client or are thrown away (Picture 7). Item values are
updated in a loop, which is similar to previous solution where the loop
iterates over all client items, but here the loop iterates only over
queued items. This approach is more efficient when assumptions are
fulfilled, i.e. when there are many items in groups and when item values
are changed rarely.

 87

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2003 TOME I. Fascicole 3

PICTURE 6. SEQUENCE DIAGRAM - EVENT DRIVEN SOLUTION:

INFORMATION ABOUT THE CHANGE OF A VALUE IS PUT IN QUEUE

PICTURE 7. SEQUENCE DIAGRAM - EVENT DRIVEN SOLUTION: CLIENT UPDATE

5. IMPLEMENTATION AND COMPARISON

Both solutions for updating group cache are implemented by the

same OPC server. A configuration parameter exists which enables the
user to choose the update technique. According to the user selection,
CScanUpdate or CEventUpdate object is created when client adds a
new OPC group. The server is implemented in C++ programming
language as out-of-process ATL COM component that supports MTA
COM threading model. Vector templates from STL class library were
used for all cache implementations.

Solution A was designed and implemented first. From the very
beginning it was assumed that server should run different kind of clients
with rather small number of items in groups where update rates are
measured in seconds (not milliseconds). According to such assumptions

 88

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2003 TOME I. Fascicole 3

the number of concurrent client was expected to be even 100 or more.
Unfortunately, small update rate on OPC group with tens of thousands
items completely occupies CPU, which induced solution B for event
driven group cache updates.

Performances of both solutions was tested in small 10 Mbit
Ethernet computer network where the server was running on Windows
2000 1.4 GHz P4 computer and all clients were running on Windows
2000 1GHz P2 computers. All of them were equipped with 512 MB of
RAM. The client program was written for testing purposes only and
basically it measures server response time when OPC methods are
called. When initiated by a user, the client writes 10 item values to the
server (calling asynchronous Write method on IAsyncWrite interface),
and the time of call is recorded.

The time when update call is completed is also recorded for each
client. The difference between these time instances (the end of
OnDataChange call and the beginning of Write call) is denoted as server
response time. The server configuration had 42798 items. For all tests
OPC group update rate was set to 100 [ms], which means that scan
periods were set to 100 [ms] whether values were read directly from
the server cache (solution A) or values were taken from the queue
(solution B). Also, refreshing of OPC server cache from device was
turned off during the testing.

When group cache was refreshed on event basis (solution B) and 4
clients were working concurrently, average measured response time
was 42 [ms] and max was 78 [ms]. After initialization, server occupied
about 45MB of RAM and for each new client additional 8.5MB was
allocated. CPU usage was very low, only a few percent. When cache
refreshing was turned on with cycle of 500 [ms], CPU usage raised for
about 10-15%.

When group cache was refreshed on periodic scan basis (solution
A), CPU usage was significantly higher. In situation when 4 clients were
working concurrently 100% CPU usage was encountered almost all the
time. Average measured response time was 344 [ms] and max was
1128 [ms]. With 3 clients CPU usage was about 97% on server and
average measured response time was 204 [ms] and max value was 440
[ms].

6. CONCLUSION

Presented design and implementation of OPC DA Server has no

limitations on the number of items, number of OPC groups and
connected clients, but in practice CPU usage limits these numbers.
Solution A clearly divides server cache updates and group updates,
which keeps design simple. On the other hand, comparison is done for
every single item in all OPC groups, which makes CPU more engaged.
This solution is possible only when the total number of OPC groups is
small or/and number of items in each group is small. The design of

 89

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2003 TOME I. Fascicole 3

solution B, which is based on events, is more complex, but presented
results show solution B as a much better choice. When item values are
changed often and number of OPC groups is big, item source scan could
be delayed and memory consumptions for queues could be significant,
too. This solution should be extremely useful for applications where
clients are interested in all server items and item values are changed
slowly. In practice, such architectures can be seen in distributed
management application for electric power systems. Even though the
presented results prefer client cache updates based on events, both
solution should be taken into consideration when new OPC server
application is being planned.

This work has been financed by Ministry of Science and Tehnology gant IT.
1.22.3212.A.

REFERENCES
[1.] OPC Foundation, "OPC Overview, Version 1.0", 1998.
[2.] Don Box, "Essential COM", Addison-Wesley, 1998,
[3.] OPC Foundation, "The OPC Data Access Custom Specification,

Version 2.04", 2000.
[4.] Erich Gama, Richard Helm, Ralph Johnson, John Vlissides,

"Design Patterns - Elements of Reusable Object-Oriented
Software", Addison-Wesley Publishing Company, Inc., 1995.

 90

