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Abstract: 
This paper presents the principals of Kalman filtration. For a better 

understanding of the Kalman filtration it is presented an analyses of the 
stochastic estimation of processes that are affected by noise and the 
relation of this to the Kalman filtering. The command signal for an 
automatic regulation system can be of a low power and affected by noise. 
For this particularly case it is presented a simulation program that 
calculates an estimation of the command signal, using the Kalman 
filtering. 
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1. INTRODUCTION 

 
The filtration operation is met in an inevitable way in the signal 

treatment technique, because they have to go through the transmission 
channels, as some functional blocks, depending on the operation that has 
to be met of them. 

To filtrate a signal x(t) through f(t), means to make the product: 
 

x(t)⋅f(t)       (1) 
 

After the filtration, we want to know if the signal spectrum is 
influenced by this operation. If we apply the Plancherel theorem: 
 

( ) ( ) ( ) ( ) ( )νν jFjXtftxtx f ⋅↔⊗=     (2) 
 
results from, that the spectrum of the filtered signal xf(t) is affected by 
the filtration operation. 

In case that we consider the frequency representation, the filtration 
operation consist of blocking or allowed passing, totally or partial, of the 
spectrum lines through the cuadripol filter (figure 1). 
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Fig.1 Functional filtration block 

Using the numerical signal process, in different application domains 
of filtration, the obtained results are more precisely, for example in signal 
identification. In averages that are not apriori known by the designer, the 
adaptive filters have a lot of applications. Adaptive filters are 
characterized by their possibility to modify the filter parameters, to 
optimize some characteristics, based on a recursive algorithm. 

 
2. STOCHASTIC ESTIMATION 

 
While there are many applications – specific approaches to 

“computing” (estimating) an unknown state from a set of process 
measurements, many of these methods do not inherently take into 
consideration the typically noisy nature of the measurements. This noise is 
typically statistical in nature, or can be effectively modeled as such, which 
leads to stochastic methods for addressing the problem.  

Consider a dynamic process described by an n-th order difference 
equation of the form: 
 

0,... 1,1,01 ≥+++= +−−+ iuyayay iniiniii ,    (3) 
 
where {ui} is a zero-mean (statistically) white (spectrally) random noise 
process with autocorrelation 
 

( ) ijiuji QRuuE δ==, ,      (4) 
  
and initial values {  are zero-mean random variables with a 
known nxn covariance matrix: 

}110 ,...,, +−− nyyy

 
( ) { 1,0,,,0 }−∈= −− nkjyyEP kj      (5) 

 
We consider that the noise is statistically independent from the 

process to be estimated. Under some other basic conditions, the 
difference equation (3) can be re-written as: 
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which leads, in that form, to the state-space model: 
 

iii GuxAx +=+
vv

1        (7) 
 

[ ii xy vv 0...01= ]        (8) 
 
or the more general form: 
 

iii GuxAx +=+
vv

1        (9) 
 

iii xHy vv =         (10) 
 

Equation (9) represent the way a new state 1+Ixv  is modeled as a 
linear combination of both the previous sate ixv , and some process noise 
ui. Equation (10) describes the way the process measurements or 
observations  are derived from the internal state . These two 
equations are often referred to respectively as the process model and the 
measurement model, and they serve as the basis for all linear estimation 
methods, such as the Kalman filter.  

iyv ixv

 
3. THE KALMAN FILTER 

 
Within the significant toolbox of mathematical tools that can be used 

for stochastic estimation from noisy measurements, is known as the 
Kalman filter. 

The Kalman filter is essentially a set of mathematical equations that 
implements a predictor-corrector type estimator. That is a optimal 
operation in sense that it minimizes the estimated error covariance. The 
Kalman filter is frequently applied, especially in the domains of 
autonomous and assisted regulation. 

The Kalman filter addresses the general problem of trying to estimate 
the state x ∈ Rn of a discrete time controlled process that is governed by 
the linear stochastic difference equation: 
 

11 −− ++= kkkk wBuAxx       (11) 
 
with a measurement z ∈ Rm that is 
 

kkk vHxz +=         (12) 
 
The random variables wk and vk represent the process and 

measurement noise. They are assumed to be independent of each other, 
white and with normal probability distributions.  



ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2004       TOME II. Fascicole 1 

The nxn matrix A in the difference equation (11) relates the state at 
the previous time step k-1 to the state at the current state k, in absence 
of the process noise.  

It will be defined a value of x to be a priori state estimate at step k, 
. This value gives us knowledge of the process prior step k, and 

 defines a posteriori state estimate at step k given measurement zk. 
We can then define a priori and a posteriori estimate errors as: 

n
k Rx ∈−ˆ

n
k Rx ∈ˆ

 
−− −≡ kkk xxe ˆ        (13) 

 
and 
 

kkk xxe ˆ−=        (14) 
 
The a priori estimate covariance is: 
 

[ ],T
kkk eeEP −− = ,      (15) 

 
and the a posteriori estimate error covariance is: 
 

[ ]T
kkk eeEP = .       (16) 

 
In deriving the equations for the Kalman filter, we begin with the goal 

of finding an equation that computes an a posteriori state estimate , as 
a linear combination of an a priori estimate and a difference between an 
actual measurement zk and a measurement prediction , as shown 
below in equation. The justification for the next equation is given in the 
probabilistic origins of the filter.  

kx̂
−
kx̂

−
kxHˆ

 
( )−− −+= kkkk xHzKxx ˆˆˆ       (17) 

 
The difference ( )−⋅− kk xHz ˆ  in equation (17) is called the residual or 

the measurement innovation. The residual reflects the discrepancy 
between the predicted measurement  and the actual measurement 
zk. A residual of zero means that the two are in complete agreement.  

−⋅ kxH ˆ

The nxm matrix K in equation (17) is chosen to be the gain that 
minimizes the a posteriori error covariance equation (16). 

The Kalman filter estimates a process by using a form of feedback 
control: the filter estimates the process state at some time and then 
obtains feedback in form of measurements.  As such, the equation for the 
Kalman filter falls into two groups: time update equations and 
measurement equation. The time update equations are responsible for 
projecting forward (in time) the current state and error covariance 
estimates to obtain the a priori estimates for the next time step. 
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The measurement update equations are responsible for the feedback 
– i.e. for incorporating a new measurement into the a priori estimate to 
obtain an improved a posteriori estimate.  

The specific equations for time and measurement update are 
presented in the following table: 
 

Tabel 1 
Discrete Kalman filter time 

update equations  
Discrete Kalman filter 

measurement update equations 
kkk BuxAx +⋅= −

−
1ˆˆ  

 
QAAPP T

kk += −
−

1  

( ) 1−−− += RHHPHPK T
k

T
kk  

 
( )−− −+= kkkkk xHzKxx ˆˆˆ  

 
( ) −−= kkk PHKP 1  

 
  We notice how the time update equations project the state and 
covariance estimates forward from time step k-1 to step k. 
 After each time and measurement update pair the process is 
repeated with the previous a posteriori estimates used to project the new 
a priori estimates. This recursive nature is one of the most used features 
of the Kalman filter – it makes practical implementation of the filter more 
feasible then, for example, an implementation of a Wiener filter which is 
designed to operate on all the data directly for each estimate. The Kalman 
filter estimates the actual value depending on the previous measured 
values.  

Figure 2 presents a complete picture of the operations effectuated by 
the filter, based on table 1: 

Time Update (“Predict”) 
(1) Project the state ahead 

kkk BuxAx +⋅= −
−

1ˆˆ  

(2) Project the error covariance 
ahead 

QAAPP T
kk += −

−
1  

Measurement Update (“Correct”) 
(1) Compute the Kalman gain 

( ) 1−−− += RHHPHPK T
k

T
kk  

(2) Update estimate with 
measurement zk 

( )−− −+= kkkkk xHzKxx ˆˆˆ  

(3) Update the error covariance 
( ) −−= kkk PHKP 1  

Initial estimates for 
   and  Pk-1 1ˆ −kx

 
Fig.2 Complete picture of the operation of the Kalman filter 
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4. Parameter estimation of a control signal, affected by noise, 
for an automatic regulation system 
 

One of the main reasons for a automatic regulation system to 
function in the correct direction for that it was implemented, it’s necessary 
that the control signal parameters of the system shouldn’t be changed by 
the specifically environment noises where it acts. 

Through the implementation of the Kalman filter equation in MatLab, 
the user will have the possibility to modify a series of filter parameters, 
gain, number of iterations, the characteristics for the analyzed signal and 
that for the disturb signal.  

The analyzed signal in that application is a step signal affected by an 
random, Gaussian white noise. 

Figure 3 presents the obtained results throughout the simulation: the 
ideal signal form, not affected by noise (-), the disturber signal (--) and 
the estimate signal (0), obtained after the application of the predict 
correction Kalman filter algorithm. 

 
Fig.3 Ideal signal, noise signal, estimate signal 

 

5. CONCLUSION 
  

From the presented in this paper we can see an large applicability for 
the Kalman filter in the automation domain, under a large and fast 
extension of the digital leading devices in obtaining better general quality 
indicative. 
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