

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA

2004, Tome II, Fascicole 2

THE INFLUENCE OF TEMPERING TEMPERATURE AND TESTING ON STRENGHTNESS CHARACTERISTICS OF SOME ALLOYED STEELS FOR MACHINE CONSTRUCTIONS

Isidor PREJBAN

POLITEHNICA UNIVERSITY OF TIMISOARA, FACULTY OF ENGINEERING OF HUNEDOARA

ABSTRACT

In the present work is studied the high temperature behave of the steels of high resistance from the class Cr-Mo-V. It was shown that under the high temperature effect, the ultimate tensile strength value, which is producing a certain degree of plastic deformation of the steel, is in general, lower then the determined value at open air temperature. From the tested samples these temperatures the broken pieces have been taken for measuring the hardness after tempering -at different temperatures- representing graphic their variation according to the testing temperatures (20° C, 300°C, 500°C) for cooling area at tempering.

KEYWORDS

alloyed steels, the thermal treated, mechanical characteristics

1. INTRODUCTION

The mechanical characteristics values of steels are depending as well on the time period of the tests at high temperatures, as for, in accordance with the duration of the load application; there are two groups of tests, as follows:

- a) Short time duration tests, in which the heated sample is, tested same as at the usual temperature. In the case of the present work the tests has been done at short time duration.
- b) Long time duration tests, in which the heated sample is charged with a constant or variable load for establishing the combined influence of high temperature and long time duration of the tests on resistance characteristics and deformation of the steel.

Industrial work area for rolled steel products, which have to resist at high temperatures, is up to $450 - 500^{\circ}$ C, so is useful to study the mechanical characteristics variations in this area.

In case of low alloyed and alloyed steels, in case when it was used silicon – calcium as deoxidized, it was noticed an increasing of the yield point Rp 0,2 and of the elongation A5, and in the mean time a sensitive decreasing of the tensile strength Rm.

As well, at the deoxidized steels and with silicon-calcium, is noticed an increasing of the breaking energy values and minimizing of the dispersion for all mechanical characteristics.

Taking in consideration that from the steel 15VMoCr14X are produced components for undercarriage of the planes, which during operation are subjected to high and low temperatures, these has to keep their admitted properties in between -75° C up to $+500^{\circ}$ C.

For this, tensile tests were made at high temperatures and the results are shown in Table 1 for the Rp 0,2 characteristics.

					Table 1.			
Tempering		Test temperature, ^o C						
temperature,								
°C	100	200	300	400	500			
550	98,7	89,7	89,7	79,1	74,1			
	95,8	85,6	87,4	85,3	75,3			
	97,2	87,4	85,6	82,2	74,8			
	97,2	87,5	87,5	82,2	74,7			
580	93,7	86,9	86,0	85,2	79,1			
	105,2	94,8	92,2	86,0	74,2			
	99,6	91,6	93,1	85,7	72,0			
	99,5	91,1	90,4	85,6	78,1			
	106,7	98,3	95,4	87,5	79,1			
610	101,0	94,9	92,0	88,4	80,4			
	103,8	96,7	93,3	87,9	79,8			
	108,8	96,6	93,6	87,6	79,7			
	108,3	101,3	95,0	93,0	78,6			
605	101,7	99,3	96,3	83,1	81,8			
625	105,0	96,2	97,8	88,1	79,3			
	105,0	98,9	96,3	88,1	79,9			
640	103,2	93,1	89,2	98,2	83,2			
	101,6	97,1	94,1	83,2	75,1			
	102,4	95,0	91,4	86,4	79,5			
	102,4	95,1	91,6	89,3	79,6			
670	93,1	85,8	84,1	79,0	70,0			
	86,9	83,6	80,2	73,4	67,4			
	90,0	84,0	82,0	76,2	69,2			
	90,0	84,4	82,1	76,2	68,8			
700	82,1	79,4	72,6	63,0	60,1			
	80,0	74,4	73,4	67,9	64,2			
	80,3	76,6	72,5	65,9	62,0			
	80,8	76,8	73,1	65,6	68,1			

The graphic representation of data from Table 1 is shown in Fig. 1.

Guiding limit values which, has to be fulfilled by the steel 15VmoCr14X, are show in Table 2, and the graphic representation in Fig. 2.

						Table 2.	
Mechanical	Temperature,						
characteristic,	Oo						
daN/mm ²	100	200	300	400	500	600	
Rp _{0,2}	86,4	80,9	79	75	68	52	
Rm	106	93	90	88	84	60	

From the samples tested, at high temperature, the broken pieces have been taken and it was measured the hardness after tempering temperatures, tests temperatures for the tempering cooling in free air and the values are given in Table 3.

Graphic representation of the hardness variation according to tempering temperature and test temperatures for tempering in free air is shown in Fig. 3.

Fig. 1. The variation of the technical yield point with tempering temperature and test temperature.

Fig. 2. The variation of the mechanical characteristics Rm and Rp 0,2 with tempering temperature.

Fig. 3. the variation of the hardness with tempering and test temperature.

						Table 3.			
Tempering		Test temperature, °C and hardness HRC							
temperature,°C	2	20		300		500			
550	40	40	39	39	33	32			
	39	40	37	35	34	35			
	40	40	37	36	34	34			
	39,6	40	37,6	36,6	33,6	33,6			
500	38	38	36	37	34	32			
	39	39	35	34	32	31			
580	40	38	35	35	32	31			
	39	38,3	35,3	35,3	32,3	31,3			
610	38	37	35	35	31	32			
	37	36	33	34	32	31			
	36	36	34	35	31	31			
	37	36,3	34	35	31,3	31,3			
	37	36	35	34	31	31			
005	33	35	33	32	29	30			
625	34	35	33	33	30	30			
	34,6	35,3	33,6	33	30	30,3			
640	30	32	30	29	29	29			
	32	33	30	31	29	30			
	34	33	31	30	28	28			
	32	32,6	30,3	30	28,6	29			
670	28	29	28	25	24	25			
	29	29	27	28	25	27			
	28	28	26	26	24	24			
	28,3	28,6	27	26,3	24,3	25,3			

BIBLIOGRAPHY

- [1.] Mantea, S., Dulămiţă, T. Teoria şi practica tratamentelor termice, Ed. Tehnică, 1966
- [2.] Rău, A. Incluziuni nemetalice în oțeluri, Ed. Tehnică, 1973, București
- [3.] George, E., Dieter, Fr. Metalurgie mecanică (tr. limba engleză), Ed. Tehnică, 1970
- [4.] Schumann, I. Metalurgie fizică, Ed. Tehnică, București, 1926
- [5.] Nădăşan, S., ş.a. Încercări și analize de metale, Ed. Tehnică, București, 1965
- [6.] Cheşa, I., ş.a. Alegerea şi utilizarea oţelurilor, Ed. Tehnică, Bucureşti, 1984