

1 2

ON THE COMPLETENESS OF THE ALGORITHMS
DISTRIBUTED WITHIN THE DCSP MODELING

(DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM)

MUSCALAGIU Ionel, PĂNOIU Manuela, OSACI Mihaela

UNIVERSITY „POLITEHNICA” TIMISOARA,
FACULTY OF ENGINEERING OF HUNEDOARA, ROMANIA

Abstract

One of the basic characteristics to be met by any acceptable algorithm is its
completeness. The problem makes more sense within the DCSP distributed
framework, where the agents act concurrently and asynchronously, each agent being
in the position of making decisions that influence the decisions of the other agents.
In this article we will analyze the completeness of some algorithms distributed
asynchronously, to be found in the reference literature: the classic backtracking
algorithm distributed asynchronously (Asynchronous Backtracking), its improved
variant (Asynchronous Weak–Commitment Search) and Hamadi’s distributed
backtracking algorithm (Distributed Backtracking). We will point out to the fact that
the first two are complete algorithms, unlike the third, for which the completeness has
not been demonstrated yet.

Keywords

Artificial intelligence, distributed programming, constraints, agents.

1. INTRODUCTION

 One of the basic characteristics to be met by any acceptable algorithm is its
completeness. It consists in knowing whether the algorithm has an end, i.e. whether
it does not lead to an infinite loop, without giving an answer. In other words, we are
interested in finding out whether the algorithm, for a certain instance, can lead to an
answer, either affirmative (i.e. to find a solution) or negative (pointing out that there is
no solution).

This characteristic is very important for any algorithm. The problem makes
sense particularly in the case of the distributed framework, as, for instance, in the
situation of agent modeling, if one agent keeps on changing its values and never
reaches a stable condition, the algorithm will enter a loop. Things become even more
complex in the distributed context, where agents act concurrently and
asynchronously, each agent being in the position of making decisions that influence
the decisions of the other agents.

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2004 TOME II. Fascicole 2

 106

In this chapter we will analyze the completeness of the most important
asynchronous distributed algorithms . We will introduce the way in which each DCSP
technique ensures the completeness of the algorithm.

We are talking about Yokoo’s classical asynchronously distributed
backtracking algorithm (AB–Asynchronous Backtracking), (AWCS-Asynchronous
Weak–Commitment Search) published in [6] and about Hamadi’s distributed
backtracking algorithm (DIBT - Distributed Backtracking) [2,3] . For the first two, the
authors have demonstrated their completeness, whereas for the third one, there is no
such demonstration.

2. THE FRAMEWORK.

In order to carry out the completeness analysis, we will introduce in this
paragraph a few notions that are to be found in the reference literature in relation to
DCSP modeling [5] .

Definition 1.- CSP model. The model based on constraints CSP-Constraint
Satisfaction Problem, existent for centralized architectures, consists in:

- n variables x1, x2, …, xn, which can take finite values, within several finite,
discrete domains D1, D2,…, Dn .

- a set of constraints among these variables .
Solving a CSP supposes finding an association of values for all variables so

that all constraints be met (realized).
Definition 2.- DCSP model. One problem of meeting the distributed constraints

(DCSP) is a CSP, in which the variables and the constraints are distributed among
autonomous agents that communicate by message exchange.

3. COMPLETENESS IN CASE OF ABT ALGORITHM

The first algorithm we are going to analyze from the point of view of its
completeness is Yokoo’s classical backtracking algorithm. In this algorithm, every
agent instantiates its variable concurrently and sends its value to the agents it is
directly connected to, further waiting for the messages to be answered. This
behavior, in which each agent keeps changing the value, leads to the question
whether the algorithm has an end, i.e. if it does not end up in a loop. For example, a
looping instance is the one where x1 obliges x2 to change its value, the changing of x2
causing the value of x3, to change and x3 determining the change of x1. Such
situations can arise in the case of applying an asynchronous algorithm.

In [5, 6], the authors suggest one way of eliminating the loops in a network of
constraints, based on a technique using a unique identifier, technique used for
avoiding dead ends in systems with distributed databases. This technique consists in
using a relationship of complete order among the knots. If a knot has a unique
identifier, one can define a priority order of the agents by using the alphabetical order
of the respective identifiers (the alphabetically preceding agent having a higher
priority). If a link is directed by means of this priority order (from the agent having a
higher priority to the one having a lower priority), then no loop can appear in the
network. This means that for each constraint, the lower priority agent will be the
estimator and the higher priority agent will OK the message of the estimator.

The authors of the algorithm demonstrate in [5,6] that the algorithm is
complete. They point out that if there is a solution, the algorithm leads to a stable
solution where all the values of the variables meet all the constraints and all the

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2004 TOME II. Fascicole 2

 107

agents are in wait of messages. Also, if there is no solution, they point out that the
algorithm reveals this situation and closes.

4. THE COMPLETENESS OF THE AWCS ALGORITHM - ASYNCHRONOUS

WEAK–COMMITMENT SEARCH

The next algorithm to be analyzed is the asynchronous search algorithm, in its
improved variant. We have seen in the previous paragraph that the completeness
problem was solved for the basic algorithm (the asynchronous algorithm), which this
new algorithm is derived from.

The AWCS algorithm is a hybrid one, obtained by combining the ABT
algorithm with the WCS one, existent for CSP, within centralized architectures. It can
be considered as an improved variant of ABT, due to the priority change. It purposely
aims at stocking all the nogood values in order to ensure the completeness of the
algorithm, but also to avoid instable situations.

In [6] the authors show that this new algorithm can be built by a dynamic
change of the priority order.

The AWCS algorithm uses, as ABT, the two types of messages, OK? and
nogood, with the same signification. There is a major difference in dealing with the
OK? message. In case of receiving it, if the agent cannot find a value for its variable
to be consistent with the values of higher priority variables, it no longer generates
and sends the nogood message, but increases the priority, in order to maximize it
with respect to the neighbors.

By means of the rules mentioned above, when a backtracking arises, the
priority order will be changed in such a way that the agent having higher priority
before the backtracking should meet the constraints of the agent generating the
backtracking and having now a higher priority value. Moreover, in the asynchronous
backtracking algorithm, the agents are trying to avoid situations labeled as nogood.
Yet, because of the delays that might arise on message transmittal, the view agent
set of an agent can occasionally be a superset of the values previously found as
nogood. In order to avoid the effects of unstable situations and of those where
useless changes of priority value were operated, each agent keeps a record of the
nogood situations reported. When the agent view list is identical to the nogood one,
the agent will not change the priority value, but will wait for the next message.

As to the problem of its completeness, we have noticed that it was raised and
solved for the basic algorithm (the asynchronous algorithm) out of which this one is
derived. When can blocking situations arise? The priority of values is changed if and
only if a non-solution is found. But the number of nogood value combinations is finite
(even if large), the value priority cannot be changed at infinitum. Therefore, according
to the authors of the algorithm, after a certain, surely finite, period of time, the priority
of values is bound to be stable. In [6], the authors show that the situation mentioned
above cannot arise in the situation in which value priority is stable.

We have to point out that the AWCS algorithm itself needs record keeping of
each nogood list, in order to ensure the completeness of the algorithm, giving the
impression of an inefficient exponential space in real media. Yet, the experiments
show its greater efficiency, as compared to the ABT algorithm.

Therefore, AWCS is efficient and complete by record keeping of all nogoods
(whose number is smaller), but suffers if there is an outburst in the appearance of
nogood values. Thus, the costs of constraint checking can be rather high, as in
AWCS, an agent can generate nogoods for all its neighbors. One last idea, related to

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2004 TOME II. Fascicole 2

 108

practice, is to limit the number of nogood recordings to a fixed value, sacrificing the
completeness, but leading to more rapid results.

5. COMPLETENESS IN THE CASE OF DISTRIBUTED BACKTRACKING.

Another algorithm for asynchronous search is the Distributed Backtracking,

published in [2, 3]. This is a variant of algorithm that does not imply add-link-type
messages and eliminates completely the record keeping of nogood values.

The variant of distributed backtracking (DIBT- Distributed Backtracking) is
based on the classical backtracking algorithm, the centralized case. If the ABT
asynchronous algorithm uses learning schemata, this one eliminates them.

This is a synchronous algorithm, but it needs a certain order for the agents
applying the backtracking schema, in order to ensure the completeness of the
algorithm. Hence, a partial order among the agents is to be sought, in order to be
used at initiating the variables and which will be further extended to a total order with
the aim of guiding the backtracking steps. As there are no restrictions regarding the
order to be used, we will be able to decide upon the use of a certain order, which
best fits the topology of the constraint graph. This fact results in the restriction of the
search space and of the number of exchanged messages. The author defines in [3] a
generic method, named DAO, in order to determine the order of the distributed
variables. This order, as well as the lexicographic order in ABT, is vital for ensuring
completeness.

In [3] is introduced a demonstration schema for the correctness of the
algorithm. The author points out to a few elements meant to ensure the
demonstration of the correctness of the algorithm, but they are unfortunately not
enough. We are going to analyze them further on. The author says that irrespective
of the heuristic used for the order of variables, the oriented graph induced by set Γ in
algorithm DAO, has no circuit. Thus, the backtrack step (respectively the instantiating
one) from one agent cannot lead to the receiving of bt - type messages (respectively
infoVal) from one of the children (respectively parents). During the backtrack step, it
is only the remaining values that are tested for consistency, while during infoVal
message receiving, the agent reconsiders its entire initial domain. Based on this
observation, associated to the fact that message transmittal is done in finite time and
also on the correctness of the detection of algorithm ending from [LC85], the author
concludes that it is correct.

Unfortunately, while this algorithm is efficient from the point of view of memory,
it fails some valid situations, being unable to find the solution. For instance, for the
network with 5 agents given in figure 1, the algorithm is incomplete.

 Fig.1. Example of network with constraints for which DIBT is not complete.

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2004 TOME II. Fascicole 2

 109

The links among variables represent constraints of inequality type. The
domains are formed of values a, b, as it can be seen in figure 1. DIBT can run in the
following way:

• x1 and x2 select a, respectively b and inform their children (see fig. 1.).
• x3 has no other choice than value a so that a backtrack is generated to x1

while x4 performs a backtrack to x2 because of the value conflicts.
• x1 and x2 select b, respectively a and inform their children.
• x4 performs a backtrack to x2 whose domain is empty, then a backtrack to x1

follows, leading to inconsistency.
This way of running of algorithm DIBT leads to the impossibility of finding a solution,
although it exists (a,a,b,b,b). One cause of the fail is that x2 ignores the behavior of
x1 and does not reset its domain when x1 changes its value from a into b.
 In order to eliminate these difficulties and ensure the completeness of the
algorithm, in [2] the author extends sets Γ+ and Γ-, named the sets of children and
parents, in order to be sure that the InfoVal() message will reset all the relevant
domains, and the btSet() message will beable to identify, for all backtracks, the guilty
ones, adding in advance a few ABT-type links.
 Unfortunately, in [7], Yokoo shows that this algorithm is incomplete. This is
due to the fact that when it checks if a nogood value is old, algorithm DIBT takes into
consideration its own values only, neglecting the values in the parent sets. This can
lead to false deductions, such as the unification of several nogood values from
different contexts. One example of such behavior is given in figure 2.

We consider, as in the previous example, the existence of inequality
constraints among the link knots. DIBT can run in the following way :
• x1 selects value a and informs its children (notice x2 and x3), x2 selects value c

and informs its child (x3). In exchange, x3 has an empty domain, having nothing
left to choose. Therefore, it performs a backtrack to x2 with value nogood (x1=a
and x2 =c) .(P1)

• in the meantime, x1 is bound to change its value because of the messages
coming from the parents, eliminating value a. x1 selects value b and informs its
children, making x2 eliminate value b from its domain. (P2)

• the message sent by x3 to step 1 now reaches x2. Unfortunately, this nogood is
old in the context of the agents (x1 no longer has value a but b), but because local
values are not checked again, it is processed. Therefore, is make to backtrack
with value nogood (x1=b). (P3)

• now, the domain of x1 is empty, x1 also performing backtrack. And thus, not
finding any solution (x1=a, x2 =b şi x3=c). (P4)

In [1] a patch is suggested for fixing this bug. It consists in checking once
again the incoming nogood messages, within the new context: each agent must be
sure that the incoming and outgoing item of information is consistent with its local

Fig.2. Example of constraint network for which the extended DIBT is not complete.

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2004 TOME II. Fascicole 2

 110

view. As a conclusion, we notice that the complete wipe out of the ABT-type
additional links and of the nogood values is not 100% possible. Yet, the algorithm
DIBT a needed to add a few ABT-type links and some nogood values, in order to
ensure completeness (according to the elements mentioned above).

6. CONCLUSIONS

Each of the three techniques presented above is based on certain elements

meant to ensure the completeness of the algorithm.
The ABT algorithm ensures completeness by means of a technique based on

a unique identifier, technique used to avoid the dead ends in systems with distributed
databases. This technique consists in using a relationship of total order among the
knots. If a knot has a unique identifier, a priority order can be defined among the
agents by using an alphabetical order of those identifiers (the alphabetically
preceding agent has a higher priority with respect to the other agent).

The AWCS algorithm needs the record keeping of nogood lists in order to
ensure the completeness of the algorithm. The main problem consists in changing
the priority of agents. But value priority is changed if and only if one nogood is found.
But, the number of nogood value combinations is finite (even if large), value priority
cannot be changed at infinitum. Therefore, according to the authors of the algorithm,
after a certain time, which is surely finite, value priority will be stable.

The DIBT algorithm needs no add-link-type messages, eliminating completely
the record keeping of nogood values and uses a method of ensuring order among
the agents applying the backtracking schema, meant to ensure the completeness of
the algorithm. Unfortunately, in [7], Yokoo shows that this algorithm is incomplete.
This is due to the fact that when verifying if a nogood value is old, algorithm DIBT
takes into calculation only its values, ignoring the values in the parents’ set.

As a conclusion, we notice that the complete wipe out of ABT-type additional
links and nogood values is not 100% possible. Nevertheless, algorithm DIBT needed
some extra ABT-type add-links and some nogood values in order to be able to
ensure completeness in the situation given in [7].

7. BIBLIOGRPHY

 [1] Christian Bessière, Arnold Maestre, Pedro Meseguer. Distributed Dynamic
Backtracking.In Proceedings of the CP’00 Workshop on DCSP, Singapore,2000.

[2] Hamadi Y. – Traitement des problemes de satisfaction de constraintes distributes. PhD
theisis, Universitatea Motpellier II, 1999.

[3] Hamadi Y., Bessiere C., Quinqueton J. Backtracking in Distributed Constraint
Networks. In Proceedings of the 13th, ECAI , Brighton, UK, 1998, pag. 219-223.

[4] L. Lamport K. M. Chandy. ‘Distributed snapshots: Determining global
states of distributed systems’, TOCS, 3(1), 63–75, 1985.

[5] Yokoo M., E.H. Durfee, T. Ishida, K. Kuwabara - Distributed constraint satisfaction for
formalizing distributed problem solving. In ICDCS, 614{621). June 1992.

[6] Yokoo M., E.H. Durfee, T. Ishida , K. Kuwabara - The distributed constraint satisfaction
problem : formalization and algorithms . IEEE 10 (5), 1998 .

[7] Yokoo Makoto . Private communication, 2000.

	MUSCALAGIU Ionel, PĂNOIU Manuela, OSACI Mihaela
	UNIVERSITY „POLITEHNICA” TIMISOARA,
	FACULTY OF ENGINEERING OF HUNEDOARA, ROMANIA
	Abstract
	Keywords

	Definition 1.- CSP model. The model based on constraints CSP-Constraint Satisfaction Problem, existent for centralized architectures, consists in:
	- n variables x1, x2, …, xn, which can take finite values, within several finite, discrete domains D1, D2,…, Dn .
	- a set of constraints among these variables .
	Solving a CSP supposes finding an association of values for all variables so that all constraints be met (realized).
	In [5, 6], the authors suggest one way of eliminating the loops in a network of constraints, based on a technique using a unique identifier, technique used for avoiding dead ends in systems with distributed databases. This technique consists in using a relationship of complete order among the knots. If a knot has a unique identifier, one can define a priority order of the agents by using the alphabetical order of the respective identifiers (the alphabetically preceding agent having a higher priority). If a link is directed by means of this priority order (from the agent having a higher priority to the one having a lower priority), then no loop can appear in the network. This means that for each constraint, the lower priority agent will be the estimator and the higher priority agent will OK the message of the estimator.
	As to the problem of its completeness, we have noticed that it was raised and solved for the basic algorithm (the asynchronous algorithm) out of which this one is derived. When can blocking situations arise? The priority of values is changed if and only if a non-solution is found. But the number of nogood value combinations is finite (even if large), the value priority cannot be changed at infinitum. Therefore, according to the authors of the algorithm, after a certain, surely finite, period of time, the priority of values is bound to be stable. In [6], the authors show that the situation mentioned above cannot arise in the situation in which value priority is stable.
	Hamadi Y., Bessiere C., Quinqueton J. Backtracking in Distributed Constraint Networks. In Proceedings of the 13th, ECAI , Brighton, UK, 1998, pag. 219-223.

