
  

 

1 2   
 

 

 
 

CONSIDERATIONS UPON THE MOTION OF THE POROUS 
MATERIALS WITH ELASTIC SKELETON 

 
 

Vasile BACRIA 
 

“POLITECHNICA” UNIVERSITY OF TIMIŞOARA 
 

Abstract 
The porous materials are used in the attenuation of the sound waves. 
In the paper are established the differential equations of motion for porous 

materials with metallic skeleton. 
We obtain relations that allow the determination of porous material impedances 

and the absorption coefficients of sound for different porous materials applied on the 
acoustic screens. 
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1. THE EQUATIONS OF MOTION 
 

Let us consider a porous material with cylindrical open pores having radius 
equal to R, placed parallel on the length of the material. The air friction force with 
viscosity  at laminar flowing through an element of the material with transversal 
section 1 cm2 and thickness dx, according to Poiseuille law, is 

ν

  
 dxhvP PPf ⋅⋅⋅σ=   (1)  
 
where  

 2
8
RP
ν⋅

=σ  (2) 

 

is the resistance of the air in the pores of the material, 
th

QvP ⋅
=  - the linear speed of 

the air on the length of the pore’s axle, Q – the flow of the air through the pores,          
t – the time necessary for passing air and h – the porosity. 

The expression (1) of friction force of the air from the walls of the pores is also 
available for non uniform and non cylindrical pores and non laminar or oscillating 
flowing of the air, but the air resistance is not expressed anymore through the simple 
formula (2). 

Let us consider a material with parallel pores of different diameters situated 
under the angle  as to the normal at the surface of the material from which we 
isolate an element 1 cm2 in section and dx in thickness. 

θ
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 In order to ease the following deductions, suppose that all the pores came 
together; the projection of their surface on the plan perpendicular to the normal 
equals h (fig. 1). 

By replacing a few parallel pores with the equivalent pore we are influencing the 
value of the friction force. This force is the one given by the formulas (1) and (2). The 
inertness forces against (on) the element and the air contained in it did not change. 

Suppose that on the surface of the isolated element of the skeleton and of the 
air, there are operating the sonorous pressure ps and pa. On the unit of the surface of 
the material will operate the forces ( )hpp s −= 11  and hpp a ⋅=2  

 

 
Fig 1. 

 
We shall use the following notations: 1ρ  for the density of the skeleton of the 

material and v1 for its speed in direction of the normal at the surface of the material; 
in that case, the inertness force corresponding to the element of the skeleton is 

t
v

dX
∂
∂
⋅⋅ρ 1

1  .  

 The air also takes part in two motions: one portable with an acceleration equal 

with the acceleration of the skeleton 
t

v
∂
∂ 1  and a relative motion with relative 

acceleration ( )
t

vv
cost

vp

∂
−∂

⋅
θ

=
∂

∂ 121  where vp is the linear speed of the air on the 

length of the axis of the pore in its relative motion, and v2 represents the linear speed 
of the air on the direction of the normal at the surface of the element. The inertness 

forces corresponding to the air are equal to 
t

v
dx

∂
∂
⋅⋅ρ 1

2  and ( )
t
vv

cos
dx

∂
−

⋅
θ

⋅ρ 12
2  

where  is the mass of the air contained in the unit of the volume and hp ⋅=ρ2 ρ  
represent the density of the air in the atmosphere. 
 During the air motion in the pore also appears an interaction force between the 
air and the skeleton with the normal component Pn and the tangential one Pf. 
 Also on the volume cut from the skeleton operate the force T perpendicular on 
the ox axis in perpendicular direction on the normal, due to the deformation of the 
material (fig. 2). 

 
Fig. 2 
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In the same way we may consider separately the section of the skeleton of the 
volume element cut and the air contained in this volume which operate on it (fig. 3 
and 4). 

Projecting the forces which operate on the volume element cut from the porous 
material on ox axis (fig. 2) after making the reduction and simplifications necessary, 
we obtain  
 

 
t

v
t

v
x

p
x
p

∂
∂
⋅ρ+

∂
∂
⋅ρ=

∂
∂

−
∂
∂

− 2
2

1
1

21   (3) 

 
 Furthermore, by projecting on the axle of the posre the forces which operate on 
the air, situated in the volume element cut from the element (fig. 4) and using the 

expression (1) where 
θ

−
=

cos
vv

vp
12  results  

 

 ( ) ( )12
212

2
2

2
2 1 vvh

t
v

t
v

t
v

x
p

−⋅⋅σ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

⋅−ε⋅ρ+
∂
∂
⋅ρ=

∂
∂

−   (4) 

 

where 
θ

=ε
2

1
cos

 is the structure factor and 
hp
ε
⋅σ=σ  represents the resistance of the 

material faced up by the air which is different from the one established in the 
expression (2). If the pores are not parallel and have a chaotic orientation, the 
structure factor has a more complex formula. 
 

 
                     Fig. 3                                                    Fig. 4 
 
The equation obtained can receive a symmetrical formula if we introduce the 

expression of 
x

p
∂
∂ 2  from the equation (4) in the equation (3) 

 

 ( ) ( )21
221

2
1

1
1 1 vvh

t
v

t
v

t
v

x
p

−⋅⋅σ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

⋅−ε⋅ρ+
∂
∂
⋅ρ=

∂
∂

−   (5) 

 
 Two of the expressions (3)-(5) are the motion equations for porous materials 
with elastic skeleton. 
 These equations are universal because they are valid for stationary process 

and also for non stationary ones. For instance, if we consider ϖ⋅=
∂
∂ i
t

 (for harmonic 
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oscillation) the expressions (4)-(5) appear in the motion equation obtained by 
Zwikker, Kosten [4] and L. Beranek [1]. 
 Beranek introduces in the equation (1) an additional term that estimates the 
damages at the friction in skeleton; the damages at the friction in the air are not take 
considered. 
 We can estimate easier the damages of the friction in the skeleton and in air 
through the complex modules of elasticity. 
 

2. THE CONTINUITY EQUATIONS 
 

Next, we will establish the continuity equations. For the porous material 
skeleton, based on Hooke's law, we may write ( )'Ep 1111 ε+ε⋅=−

s

. Here 
 is the complex module of elasticity Es and ( ss iEE η⋅+⋅= 11 ) η  is the dynamic module 

of elasticity and the coefficient of the damage of the skeleton; 1ε  - the deformation of 
the skeleton in the direction of the ox axis;  - the supplementary deformation on the 
same axis determined by the air pressure. 

'
1ε

For the various porous materials (glass wool, mineral wool, polymer etc.) due to 
the fact that the elasticity module of the air is a lot less significant than the elasticity 
module of the material used to produce the skeleton of the porous materials we may 
consider . Subsequently, '

11 ε>>ε 11 ε=− p  and by differencing this equality in function 
of time we obtain 
 

 
x
v

E
t

p
∂
∂
⋅=

∂
∂

− 1
1

1   (6) 

 
We can obtain the continuity equation for the air from the equation of status for 

the polytrophic process PVn = const., where P and V represent the pressure and the 
volume, and n – the polytrophic index. From the equation of status we obtain the 

increase of pressure 
V
VnPP Δ

⋅⋅=Δ−  where VΔ  is the increase of the volume. 

 The increase of   pressure equals the increase of sonorous pressure   PΔ aPΔ

h
P

PP a
2Δ

=Δ=Δ  . 

 Multiplying the air pressure by the polytrophic index leads to the complex 
module of air elasticity ( )aa iEEnP η⋅+⋅==⋅ 12 , where Ea and aη  are the dynamic 
module of elasticity and the damage coefficient for air. These relations lead to 

V
VhEP Δ

⋅⋅=Δ− 22  . 

In the isolated element of the volume, the initial volume of air (fig. 1) is V = hdx. 
If we consider that at the modification of the hydrostatic pressure the skeleton 

volume does not change in the initial conditions because the elasticity module of the 
air is much less significant than the elasticity module of the material, used to make 
the skeleton, then at the compression of the skeleton to the value 1uΔ  and the air to the 
value , the air volume in the element adjusts to the value2uΔ ( ) 12 1 uhuV h Δ⋅−+Δ⋅=Δ . 
 Replacing the values of volumes V and VΔ  in expression of , after dividing 
with  and effecting the limit for 

2pΔ
tΔ 0→Δ t  we obtain  
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 ( )
x
v

Eh
x

v
Eh

t
p

∂
∂
⋅⋅−+

∂
∂
⋅⋅=

∂
∂

− 1
2

2
2

2 1   (7) 

 

where 
t

u
v ,

, ∂

∂
= 21

21 . 

The expressions (6) and (7) represent the continuity equations for some porous 
materials (glass wool, mineral wool, polymer etc.). For other materials these 
equations are not so accurate, 
 

3. THE INTEGRATION OF MOTION EQUATION 
 

We will solve the equations (4)-(7) for the harmonic vibrations ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϖ⋅=

∂
∂ i
t

 . 

Introducing the expression (6) in formula (5) and the expression (7) in formula 
(4) we obtain a system of two equations 

 
( )( )

1
2

222
2

2
1

2
1

22
2

2

1
2
2

2 1 v
Ehsi

ssisi
x
v

h
h

si
si

Eh
E

x
v

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅⋅ϖ⋅
⋅ϖ+⋅ϖ⋅−ϖρ⋅ϖ⋅−ϖρ

+
∂

∂
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

⋅ϖ⋅
⋅ϖ⋅−ϖ⋅ρ

⋅
⋅

=
∂

∂  (8) 

  

 1

2
1

2
1

2
1

2 v
si

si
x
v

si
E

v ⋅
⋅ϖ⋅

⋅ϖ⋅−ϖ⋅ρ
−

∂

∂
⋅

⋅ϖ⋅
−=   (9) 

 
where  is the coefficient which characterizes the link between 
the vibrations of the skeleton and of the air. 

( ) 2
2 1 his ⋅σ+−ε⋅ρ⋅ϖ⋅=

If we eliminate v2 from the expression (8) and (9), we obtain the equation 
 

 012
1

2
1

4
=⋅+

∂

∂
⋅+

∂
∂

vB
x
v

A
x
v   (10) 

 
where  
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2
2

11

2
1

Eh
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EhEh
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E
A

⋅
⋅ϖ⋅

−
⋅
ϖ⋅ρ

+
⋅
⋅ϖ⋅

−
ϖρ

=   (11) 
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2
2

21

2
1

2

2
2

1

2
1

E
si

EhEh
si

EEhE
B ⋅ϖ⋅

⋅
⋅
ϖ⋅ρ

−
⋅
⋅ϖ⋅

⋅
ϖ⋅ρ

−
⋅
ϖ⋅ρ

⋅
ϖρ

=   (12) 

 
The solution of the equation (10) is  

 
 ( ) tixxxx eeCeCeCeCi ⋅ϖ⋅⋅γ−⋅γ⋅γ−⋅γ ⋅+++⋅ϖ⋅=ϖ 2211

43211   (13) 
 
where  
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, −−=γ

42

2

21 m   (14) 

 
 From the continuity equation (6) as well as from the solution (13) we obtain 
 
 ( ) tixxxx eeCeCeCeCEp ⋅ϖ⋅⋅γ−⋅γ⋅γ−⋅γ ⋅⋅γ+⋅γ−⋅γ+⋅γ−= 2211

4232211111   (15) 
 
 From the expression (9) and (13) results 
 
 ( ) tixxxx eieaCeaCeaCeaCv ⋅ϖ⋅⋅γ−⋅γ⋅γ−⋅γ ⋅ϖ⋅⋅+++= 2211

242312112   (16) 
 

Finally from the continuity equation (7) and the expressions (13) and (16) we 
obtain 

 
 ( ) tixxxx eeCbeCbeCbeCbEp ⋅ϖ⋅⋅γ−⋅γ⋅γ−⋅γ ⋅⋅⋅γ+⋅⋅γ−⋅⋅γ+⋅⋅γ−= 2211

42232221111122  (17) 
 
where 
 

 
( ) ( )

si
E

a
si

E
a

hhabhhab

⋅ϖ⋅
ϖ⋅ρ+γ⋅

−=
⋅ϖ⋅

ϖ⋅ρ+γ⋅
−=

−+⋅=−+⋅=
2

1
2
21

2

2
1

2
11

1

2211

11

11
  (18) 

 
From the expressions (13)-(17) we observe that in the porous material with 

elastic skeleton, two waves propagate simultaneously with constants  and . 
These waves are coupled and they propagate in the game time in the skeleton as 
well as in the air. 

1γ 2γ

The relations (13), (15), (16) and (17) allow the determination of porous 
materials impedances and absorption coefficients of sound for different porous 
materials applied on acoustic screens. 
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