

1 2

CLIENT SIDE ARCHITECTURE OF HIGH SPEED DATA
ACCESS SERVER IN DISTRIBUTION MANAGEMENT

SYSTEMS

Aleksandar ERDELJAN, Dragan S. POPOVIĆ,
Imre LENDAK, Darko ČAPKO

UNIVERSITY OF NOVI SAD,

FACULTY OF TECHNICAL SCIENCES,
SERBIA & MONTENEGRO

Abstract:
The aim of this paper is to describe the client side architecture of a high-
speed data access server managing data in a Distribution Management
System (DMS). The presented solution is adapted to the specific DMS
requirement, and it simplifies client applications. The main design issue
was to enable both fast server response and access to large numbers of
items in an efficient way. The design of the interfaces is based on existing
DAIS/OPC standards, slightly modified to satisfy the specific DMS
requirements. The HSDA server was implemented using CORBA
middleware and tested on various Microsoft Windows and Unix/Linux
operating systems, including HP Tru64 Unix on Alpha machines.

Key words:
Data Access servers, Distribution Management Systems, DAIS, CORBA

1. INTRODUCTION

Distribution has the highest software demands in the electric utility
industry, dealing with large numbers of items (usually hundreds of
thousands). To deal with this plethora of items, powerful Distribution
Management Systems (DMS) [1] are needed. They have to monitor and
control power delivery equipment, ensure system reliability, voltage
management, demand-side management, outage management, work
management, automated mapping and facilities management. All these
concepts have to be represented in DMS software, and they have to be
easily reachable by a wide range of client applications.

This paper partially presents the design of a High Speed Data Access
server, which serves as a link between the data in a DMS and its clients.
Due to the lack of space, this paper focuses only on the client side
interfaces of the HSDA server component. The internal structure of the
server is not discussed.

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 2

The task of the HSDA server is to manage the actual network state
data consisting of frequently changing values, e.g. measurements,
switchgear statuses, tap changer positions etc. Although a smaller part of
these values is automatically collected from field devices (through SCADA
subsystems), the majority of network state data consists of items whose
values are manually entered/changed by operators.

Typical clients of the HSDA server are applications that run a set of
DMS analytic functions or GUI operation management applications which
implement a graphical representation of network state and DMS function
results. Whether new item values come from the field or are entered
manually, the network state is changed. These changes should be quickly
dispatched to all clients in order to trigger the recalculation of DMS
analytic functions.

The network state consists of a collection of variables - items, and the
role of the HSDA server is to enable clients to read and write these items’
values in an efficient way. DMSs use different item types: measurements,
switch statuses, tap changer and capacitor changer positions, fuse
statuses, relay protection settings, etc.

The proposed HSDA server stores the values of these items in
structures, e.g. the switchgear structure contains: switch status (open,
closed, in transition) that is normally read from a field device, and “locked
for operation” and “out of order” fields that can be set by the operators.

DA server interfaces should enable:
 Transfer of many item values of different types in same vector,
 Client subscription to item value changes,
 Redundancy to avoid single point of failure.

1.1. Technologies used

A middleware was needed for the communication between the HSDA

server and its clients. Although OPC [2] is a de facto standard for inter-
process communications in industrial software systems, it has one major
weaknes: its tight coupling with DCOM, which is a middleware
implemented on MS Windows platforms only.

As one of the mandatory requirements was that the HSDA server
should work on various operating systems and that it should support cross
platform connections between clients and servers, OPC was ruled out as
inappropriate.

Recent OPC specifications like OPC DX, OPC XML allow cross platform
communication utilizing XML [3]. Unfortunately, due to a request for a fast
server response, the overhead, which XML introduces, is not acceptable
for this kind of applications.

1.2. The solution

The solution, which seems the most appropriate basis for a cross-

platform HSDA server is the DAIS (Data Acquisition from Industrial
Systems) [4] specification. It adheres to OPC, simplifying the porting of

 24

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 2

existing OPC DA solutions to DAIS, and it is implemented on top of CORBA
middleware (Common Object Request Broker Architecture) [5]. CORBA is
an industry standard defined by the Object Management Group (OMG),
which has operating system independent and open source
implementations (e.g. omniORB [6]).

DAIS describes both interfaces and an information model. Because of
the specific needs imposed by the DMS, certain changes needed to be
made to the interfaces and model proposed by DAIS:

1. It was necessary to use structures for data transmission instead of
DAIS’s SimpleValue type, because DMS item types are structures
that can’t fit into a SimpleValue. Another reason for this change
were possible performance and memory usage issues

2. Item groups were left out, because DMS clients need all item
changes, not only a subset of those

Another important reason for not complying fully to DAIS was the
complexity of DAIS, which would have prolonged development time.
Therefore it was decided to modify DAIS for the specific needs imposed on
the HSDA server by a DMS (high speed, structures instead of
SimpleValues, no groups).

2. CLIENT SIDE ARCHITECTURE

In this chapter the client side architecture of the High Speed Data

Access server will be proposed and discussed. Client-server
communication is realized through a set of interfaces, published to various
client applications.

The design of these interfaces is based on the DAIS specification, but
the specific DMS needs made it necessary to make slight modifications.
We will discuss the differences between the proposed solution and the
interfaces defined in DAIS.

Figure 1. shows the interfaces which are needed to be implemented
by the client (on the left hand side of the picture), and by the server (on
the right hand side of the picture) in order to address the requirements
stated.

Client software components need to implement two interfaces,
through which they can receive asynchronous data callbacks and
important server messages (e.g. shutdown): IAsyncIOCallback and
IServerCallback. These will be discussed in detail below.

The most important interfaces, frequently used by clients are the
following: IServer, IDASession, ISyncIO and IAsyncIO. These interfaces
will be discussed in detail

 25

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 2

SupervisorSession

ISupervisorSession

IServer

IBackupSession

DASession

SessionCollect ion
<<map>>1

0..n

1

0..n

DAServer
<<singleton>>

1

1

1

1
sessions

BackupSess ion

IItemCallback

Client

IAsync IOCallback

IServerCallback

IDASession

Figure 1. Client interfaces and server session interfaces

ISyncIO

Read(itemIDs : TIDs, errors : out SItemErrors) : SItems
ReadAll() : SItems
Write(itemUpdates : SItemUpdates, errors : out SItemErrors)
WriteEx(items : SItems, errors : out SItemErrors)

<<Interface>>

ISession

Logout()

<<Interface>>

ISupervisorSession
<<Interface>>

IAsyncIO

AsyncRead(itemIds : TIDs, transId : TTransID) : TCancelID
AsyncWrite(itemUpdates : SItemUpdates, transId : TTransID) : TCancelID
AsyncRefresh(transId : TTransID) : TCancelID
AsyncCancel(cancelId : TCancelID)
SetAsyncCallback(ref : IAsyncIOCallback)

<<Interface>>

IBackupSession

SetItemCallback(ref : IItemCallback)

<<Interface>>

IServer

GetState() : EServerState
GetStatus() : EServerStatus

<<Interface>>

IServerCallback

ShutdownRequest(msgId : TMsgID, msg : TString)

<<Interface>>

IAsyncIOCallback

OnReadComplete(transId : TTransID, masterQ : TQuality, items : SItems, errors : SItemErrors)
OnWriteComplete(transId : TTransID, errors : SItemErrors)
OnCancelComplete(transId : TTransID)
OnDataChange(transId : TTransID, masterQ : TQuality, items : SItems, errors : SItemErrors)

<<Interface>>

IDASession

SetServerCallback()

<<Interface>>

ILogin

Login(username, pwd) : ISession

<<Interface>>

Figure 2. Client side interfaces of the HSDA server

 26

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 2

2.1. IServer

The IServer interface is the main entry point of the server. Clients

need to acquire a pointer to this interface in order to register a session at
the server. Sessions are set up by logging in through the ILogin interface.
After logging in through this interface, the client can set up:

1. a data access session defined in the IDASession interface, or
2. a supervisor session defined in ISupervisorSession
The most important interfaces, which can be acquired through

IServer are shown in Figure 2.

2.2. IDASession

In the majority of cases clients will register data access (DA) sessions

at the server. This type of session is defined in the IDASession interface.
It provides the client with access to item values. Since the HSDA server
enables connections of several clients at the same time, the number of
instances of DASession objects depends on the number of concurrently
connected clients and their activities. These sessions are held in a
SessionCollection container, which also has the role of dispatching new
item values received on the internal IItemCallback interface.

A typical client application uses the ISyncIO and IAsyncIO interface to
read or write items, and implements the IAsyncIOCallback interface,
through which it subscribes to item changes. When the server is shutting
down all clients are informed through their IServerCallback interfaces, i.e.
kindly asked to release all server interfaces they are holding at the
moment.

It is important to notice that the solution proposed by this paper
introduces a considerable amount of changes to DAIS’s item description
mechanisms. The various “find” methods proposed by DAIS were left out
in order to shorten the time needed for development. Also, instead of
DAIS’s Item interface, we propose three different kinds of item structures
(see Fig. 3):

 SItemUpdate holds an item’s ID and its value (TValue type);
 SItem extends SItemUpdate by adding the folowing values: alarm,

tag, quality and timestamp
 SItemEx further extends the SItem structure with a “value mask”

field to indicate which element of the structure has changed.
Another cause for the introduction of these item types was that the

DMS must handle complex data types, some containing sequences of
other values. This fact made it necessary to model these irregular item
types with the above listed three special types.

 27

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 2

SItemEx
mask : TValueMask

SMeasurement
value : float
ok : octet
weight : octet
locked : octet

SSwitchGear
status : octet
ok : octet
locked : octet

TValues
<<sequence>>

SItems
<<sequence>>

SItem
itemID : TID
alarm : TAlarm
tag : TTag
quality : TQuality
timestamp : STime 0..n0..n

SItemUpdate
itemID : TIDTValue

disc : EItemType

<<union>>

0..n0..n1

1

1

1

value

1 111

...

CORBA IDL:
typedef sequence<SItem> SItems;

CORBA IDL:
union TValue switch(EItemType)
{
case SWG_TYPE: SSwitchGear swg_value;
case MER_TYPE: SMeasurement mer_value;
...
}

CORBA IDL:
typedef unsigned long TID;

Figure 3. Proposed item types

To make data transfer more efficient, it was decided not to transfer

single items, but to group multiple items into CORBA sequences. These
types were named by adding an additional ‘s’ to the end of the item type
name, e.g. a sequence holding SItem values is named SItems (see Fig
3.). Communication between the server and the clients can be
synchronous or asynchronous. These two types of communications are
realised through methods of the ISyncIO and the IAsyncIO interfaces.

2.4. ISyncIO

Synchronous input/output operations are grouped into the ISyncIO

interface. The methods of this interface allow to read/write a certain item
held in the HSDA server and to read all item values in one call. The
ReadAll method is not included in DAIS, and although its functionality can
be achieved by DAIS’s Read method, it was added because there are use
cases when clients need to read all item values in one call (usually at
client startup).

2.4. IAsyncIO

The methods in the IAsyncIO interface allow asynchronous data

access. IAsyncIO implements the methods proposed by DAIS (AsyncRead,
AsyncWrite, AsyncRefresh, AsyncCancel) with the exception of special
exception handling.

2.5. Additional interfaces

Although the ISupervisorSession and IBackupSession are not used in

direct data communication between the server and clients, they will be
described in a few words:

 the ISupervisorSession interface contains methods which are used
by administrators for monitoring and administrative purposes, e.g.
suspend or shutdown operations.

 28

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 2

 the methods of the IBackupSession interface are used for
establishing a connection between two HSDA servers enabling
them to run in a redundant configuration.

2.6. Client connection primer

Figure 4. shows all the steps the client and the server perform during

session setup. The first step in setting up a data access session is client
login. After a valid login, the server creates a new data access session,
and adds it to its SessionCollection container.

Figure 4. Client session setup

Clients initialize their view of the network state by acquiring all item

values in one call (ReadAll). In order to receive future data changes in an
asynchronous manner, clients register their IAsyncIOCallback and
IServerCallback interfaces at the server by calling SetClientCallback and
SetServerCallback.

It is important to notice that this type of communication, in which
after an initial acquisition of all item values in a single call, clients receive
future item changes through asynchronous callbacks, is very efficient and
has low bandwidth requirements.

Should a client need to disconnect from the server, it asks the server
to release its (the client’s) callback interfaces (calling SetServerCallback

 29

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2005 TOME III. Fascicole 2

 30

and SetAsyncCallback with a NULL arguments) and initiates the release of
the data access session by logging out (Logout).

3. CONCLUSION

The proposed architecture of the client side of the HSDA server has

its advantages. It was designed with performance and resource usage in
mind, therefore implements only a slightly modified subset (no alarms and
events, no DAIS exceptions) of the functionality proposed by DAIS.

The flow of messages between the server and the clients is natural:
login, create a DA session, do synchronous/asynchronous read/write
operations and receive asynchronous data change updates. This simplicity
in turn can ease client side application development..

Another major advantage of the proposed solution is that its
implementation, written in C++, is fully cross-platform, tested on top of
omniORB on different operating systems, including various Windows and
UNIX/Linux operating systems, with extremely good results. The decision
to use structures instead of SimpleValue objects (as proposed by DAIS)
has resulted in an extremely fast HSDA server, which can meet the needs
of a large DMS with hundreds of thousands of items.

Further work on the proposed client side architecture of the HSDA
server could involve changing it in a way to make it CIM [7] compliant.

4. REFERENCES

[1.] D.S.Popovic, “Power Application - A Cherry on the Top of the DMS Cake”,

DA/DSM DistribuTECH Europe 2000, Vienna, Austria, October 10-12, 2000,
Specialist Track 3, Session 3, Paper 2.

[2.] OPC Foundation, “OPC Data Access Custom Interface Specification 2.0”,
1998

[3.] “Extensible Markup Language (XML) 1.0”, W3C Recommendation,
Feb.1998, http://www.w3.org/TR/REC-xml

[4.] “Data Acquisition from Industrial Systems (DAIS)”, OMG specification,
http://mantis.omg.org

[5.] “Common Object Request Broker Architecture (CORBA) 2.6”, OMG
specification, http://www.omg.org/

[6.] omniORB (version 4.0.5) documentation, http://omniorb.sourceforge.net/
[7.] “Common Information Model (CIM): CIM 10 Version” EPRI, Palo Alto, CA,

1001976, 2001.

http://www.w3.org/TR/REC-xml
http://mantis.omg.org/
http://www.omg.org/
http://omniorb.sourceforge.net/

	Abstract:
	The aim of this paper is to describe the client side architecture of a high-speed data access server managing data in a Distribution Management System (DMS). The presented solution is adapted to the specific DMS requirement, and it simplifies client applications. The main design issue was to enable both fast server response and access to large numbers of items in an efficient way. The design of the interfaces is based on existing DAIS/OPC standards, slightly modified to satisfy the specific DMS requirements. The HSDA server was implemented using CORBA middleware and tested on various Microsoft Windows and Unix/Linux operating systems, including HP Tru64 Unix on Alpha machines.
	Data Access servers, Distribution Management Systems, DAIS, CORBA
	Figure 4. Client session setup

