

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA

2005, Tome III, Fascicole 3

COLLOID SYNTHESIS OF CdS, V₂O₅ AND WO₃ DOPED TITANATE FILMS FOR SENSOR APPLICATION - in short presentation -

Szilvia PAPP¹, László KŐRÖSI¹, Imre DÉKÁNY^{1,2}

1: NANOSTRUCTURED MATERIALS RESEARCH GROUP OF THE HUNGARIAN ACADEMY OF SCIENCE, UNIVERSITY OF SZEGED, HUNGARY,
2: DEPARTMENT OF COLLOID CHEMISTRY,
UNIVERSITY OF SZEGED, HUNGARY

SHORT PRESENTATION

Semiconductor nanoparticles (CdS, V_2O_5 and WO_3) were incorporated into the trititanate layers to examine their influence on the photovoltaic properties of pure titanate powder.

 $Na_2Ti_3O_7$ with layered structure was prepared from a 1:3 molar mixture of powdered Na_2CO_3 and TiO_2 by heating at $800^{\circ}C$ for 2 hours, after that the Na^+ ions were exchanged for H^+ ions by hydrochloric acid treatment.

FIGURE 1. SCHEMATIC STRUCTURE OF LAYERED SODIUM TRITITANATE

 $H_2Ti_3O_7$ samples dispersed in liquids of various compositions and polarities were used for the preparation of self-assembled titanate/polymer films for further sensor applications.

FIGURE 2. TEM PICTURE OF LAYERED SODIUM TRITITANATE

Self-assembled nanofilms were built up from colloidal suspension of negatively charge semiconductor nanoparticles and positively charged PDDA solution by layer-by-layer method (see fig. 3.).

glass slide multilayer film

FIGURE 3. SCHEMATICAL REPRESENTATION OF PREPARATION OF SELF-ASSEMBLEY FILMS

CdS, V_2O_5 and WO_3 nanoparticles were incorporated into the titanate layers. CdS nanoparticles were generated from their precursors in the interlayer space. V_2O_5 , WO_3 nanoparticles were prepared by sol-gel method from V_2O_5 crystallite and metalic tungsten in a solution of hydrogen peroxide. Before the intercalation of semiconductor nanoparticles into the layes, those were pre-expanded by incorporation of n-butilammonium ions.

Titanates, their composites and the self-assembled hybrid structures (titanate/polymer/semiconductor) were characterized by X-ray diffraction, optical, electron and atomic force microscopic measurements.