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Abstract 
In this paper we purpose an improved solution strategy for the potential, steady state gravity 
channel flows. 
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1. INTRODUCTION 
 

Let's study the inviscid, potential, steady state liniarized gravity channel flows. 
We assume that the fluid is freely moving over an arbitrary smooth topography and, 
in far field, has a uniform velocity. A Cartesian coordinates system with x  axis 
following the unperturbed (at far distances) free surface and y  axis directed 
vertically upwards is used. 

We will develop a framework in order to improve the free surface flows 
solution, namely the free surface shape. 
 

2. MODELING AND ANALYSIS 
 

Let's denote by ( yx, )φ  the perturbation of the velocity potential  ( )yx,Φ
 

( ) ( ).,, yxUxyx φ+=Φ  
 

Here U denote the flow velocity in the far field. 
 Let's denote the free boundary byα . Then the inviscid fluid flows has a 
domain defined by D

 
( ) ( ){ }xyxRyxD α<<+∞<<−∞∈= 0,:, 2 . 

 
In the far field the flow has a uniform behavior and the velocity potential is 

constant 0=
∂
∂
x
φ

when ∞→x .  
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So, the flow domain  is bounded by a rigid boundary D ( ){ }0:, ==Γ yyx and 

by a free surface ( ) ( ){ }xyxS y α=:= , . 
The fluid flow is governed by Laplace's equation, 

 
,Dx,0 ∈=φΔ  

 
subject to the slipping boundary conditions on the rigid boundary Γ  

 

,x,0
n

Γ∈=
∂
φ∂  

 
and, respectively on the free surface  S

 

.Sx,0
n

∈=
∂
φ∂  

 
As well on the free boundary S due to the Bernoulli's integral we get the 

second condition which has to be imposed on the free surface. In the liniarized form 
it can be written as   

 

( ) .Sx,0xg
x

∈=α+
∂
φ∂  

 
Let's assume that, using some numerical method, an estimation of the velocity 

potential is established. 
Let's denote this estimation byφ , which can be written as 

 
( ).,, m,1 φφ=φ K  

 
On the other hand we are looking for some functions α  in some appropriate 

continuous space. However, because our intention is to give an estimation for the 
unknown function α  using an finite representation, we will represent the function α  
by an number of n components 

 
( ).,, n,1 αα=α K  

 
So the new unknown function belongs to nR . 
Obviously, for an appropriate approximation, the dimension of this space has 

to be as large as is possible. That is why we have . mn >

Since the velocity potential φ  has been established by some numerical 
method, let's denote with ε the errors introduced by the method employed. 
Then, let's denote by ε−φ=φ

~  the data for our problem and let's make the 

assumption that there is a small 0>δ  for which we have δ<φ−φ
~ . 

If we can definite an operator such that 
 

mn RR:A →  
 

and  
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( ) φ=αA  
 

this problem can be reduced to the minimization one 
 

( )( ) ( )1Amin φ−α  
 

The problem ( )1  has infinitely many solutions and among them we should 
select one which has physical relevance. In order to reach that solution we rewrite 

 in a new form by adding some additional information. So, a family of parameter 
dependent functional will be constructed and for an adequate parameter's 
selection some convergence result holds. We call a convergent regularization 
scheme ( , , ), a pair 

( )1

[ ]2 [ ]4 [ ]8 ( )( )δaTa ,  defined by 
 nm ,  a RR:T → ( ) ( )∞∈δ ,0a , a family of continuous functions such that 

 
{ } 0

~
,

~
ATsuplim t

a0
=δ≤φ−φφ−φ

→δ
 

 
with ( ) 0>δa  satisfying also 

 ( ) .0,0a →δ→δ  
 
Here  is the pseudo inverse matrix of  while  is its 

transpose. 
( ) 'AA'AA,RR:A 1tnmt −=→ A 'A

Based on the Bernoulli's integral, we can define the operator  as A
 

n,m
1IM

g
1

A −−=  

 
where  is the unitary matrix of dimension n,mI nm×  of the space and M is a mm×  
matrix, respectively the discretized expression of the x∂

∂  operator. 
Further on the operator can be constructed as  aT

 
( ) ,'AaLA'AT 1

a
−+=  

 
where  is a matrix incorporating prior information on the unknown function),L [ ]8 ,for 

any parameter choice rule satisfying both ( ) ( )00 →→ δδa and ( ) ( )002
→→ δδ

δ
a . 

In this framework there is an unique  which solve the system . na R∈δα , [ ]( )4
 

( )2,, φα δ
a

a T=  
 
Then the shape or the free surface is determined by ( )2 . 

 
3. CONCLUSIONS 

 
For an inviscid, potential, steady state liniarized gravity channel flow we have 

developed a mathematical framework to describe the free surface shape. It 
appears a promising tool for some other hydrodynamics problems. 
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