



# ON AN IMPROVED SOLUTION STRATEGY FOR A HYDRODYNAMICS PROBLEM

IOANA Tiberiu

BABES-BOLYAI UNIVERSITY, CLUJ-NAPOCA, ROMANIA

### Abstract

In this paper we purpose an improved solution strategy for the potential, steady state gravity channel flows.

### Keywords:

free surface flows, inverse problems

## **1. INTRODUCTION**

Let's study the inviscid, potential, steady state liniarized gravity channel flows. We assume that the fluid is freely moving over an arbitrary smooth topography and, in far field, has a uniform velocity. A Cartesian coordinates system with x axis following the unperturbed (at far distances) free surface and y axis directed vertically upwards is used.

We will develop a framework in order to improve the free surface flows solution, namely the free surface shape.

### 2. MODELING AND ANALYSIS

Let's denote by  $\phi(x, y)$  the perturbation of the velocity potential  $\Phi(x, y)$ 

$$\Phi(x, y) = Ux + \phi(x, y).$$

Here U denote the flow velocity in the far field.

Let's denote the free boundary by  $\alpha$  . Then the inviscid fluid flows has a domain D defined by

$$D = \{ (x, y) \in \mathbb{R}^2 : -\infty < x < +\infty, 0 < y < \alpha(x) \}.$$

In the far field the flow has a uniform behavior and the velocity potential is constant  $\frac{\partial \phi}{\partial x} = 0$  when  $|x| \to \infty$ .

So, the flow domain *D* is bounded by a rigid boundary  $\Gamma = \{(x, y) : y = 0\}$  and by a free surface  $S = \{(x, y) : y = \alpha(x)\}$ .

The fluid flow is governed by Laplace's equation,

$$\Delta \varphi = 0, \qquad \qquad x \in D,$$

subject to the slipping boundary conditions on the rigid boundary  $\Gamma$ 

$$\frac{\partial \varphi}{\partial n} = 0, \qquad \qquad \mathbf{x} \in \Gamma,$$

and, respectively on the free surface S

$$\frac{\partial \varphi}{\partial n} = 0, \qquad \qquad x \in S.$$

As well on the free boundary S due to the Bernoulli's integral we get the second condition which has to be imposed on the free surface. In the liniarized form it can be written as

$$\frac{\partial \varphi}{\partial x} + g \alpha \big( x \big) = 0, \qquad \qquad x \in S.$$

Let's assume that, using some numerical method, an estimation of the velocity potential is established.

Let's denote this estimation by  $\overline{\phi}$ , which can be written as

$$\overline{\boldsymbol{\varphi}} = (\boldsymbol{\varphi}_{1_1}, \dots, \boldsymbol{\varphi}_{m_1}).$$

On the other hand we are looking for some functions  $\alpha$  in some appropriate continuous space. However, because our intention is to give an estimation for the unknown function  $\alpha$  using an finite representation, we will represent the function  $\alpha$  by an number of *n* components

$$\overline{\alpha} = (\alpha_1, \dots, \alpha_n).$$

So the new unknown function belongs to  $R^n$ .

Obviously, for an appropriate approximation, the dimension of this space has to be as large as is possible. That is why we have n > m.

Since the velocity potential  $\overline{\phi}$  has been established by some numerical method, let's denote with  $\overline{\varepsilon}$  the errors introduced by the method employed.

Then, let's denote by  $\tilde{\phi} = \bar{\phi} - \bar{\epsilon}$  the data for our problem and let's make the assumption that there is a small  $\delta > 0$  for which we have  $\|\tilde{\phi} - \bar{\phi}\| < \delta$ .

If we can definite an operator such that

$$A: R^n \rightarrow R^m$$

and

 $A(\overline{\alpha}) = \overline{\phi}$ 

this problem can be reduced to the minimization one

$$\min(A(\overline{\alpha}) - \overline{\phi}) \tag{1}$$

The problem (1) has infinitely many solutions and among them we should select one which has physical relevance. In order to reach that solution we rewrite (1) in a new form by adding some additional information. So, a family of parameter dependent functional will be constructed and for an adequate parameter's selection some convergence result holds. We call a convergent regularization scheme ([2], [4], [8]), a pair  $(T_a, a(\delta))$  defined by

 $\Box \quad T_a: R^m \to R^n, \ a(\delta) \in (0, \infty), a \text{ family of continuous functions such that}$ 

$$\lim_{\delta \to 0} sup \left\| T_a \overline{\varphi} - A^t \widetilde{\varphi} \right\|, \quad \left\| \overline{\varphi} - \widetilde{\varphi} \right\| \leq \delta \bigg\} = 0$$

with  $a(\delta) > 0$  satisfying also

 $\Box \quad a(\delta) \to 0, \qquad \delta \to 0.$ 

Here  $A^t : \mathbb{R}^m \to \mathbb{R}^n$ ,  $A^t = (A'A)^{-1}A'$  is the pseudo inverse matrix of A while A' is its transpose.

Based on the Bernoulli's integral, we can define the operator A as

$$A=-\frac{1}{g}M^{-1}I_{m,n}$$

where  $I_{m,n}$  is the unitary matrix of dimension  $m \times n$  of the space and M is a  $m \times m$  matrix, respectively the discretized expression of the  $\frac{\partial}{\partial x}$  operator.

Further on the operator  $T_a$  can be constructed as

$$\mathsf{T}_{\mathsf{a}} = \left(\mathsf{A}^{\mathsf{\prime}} \mathsf{A} + \mathsf{a} \mathsf{L}\right)^{-1} \mathsf{A}^{\mathsf{\prime}} ,$$

where *L* is a matrix incorporating prior information on the unknown function), [8], for any parameter choice rule satisfying both  $a(\delta) \rightarrow 0$  ( $\delta \rightarrow 0$ ) and  $\frac{\delta^2}{a(\delta)} \rightarrow 0$  ( $\delta \rightarrow 0$ ).

In this framework there is an unique  $\alpha^{a,\delta} \in \mathbb{R}^n$  which solve the system ([4]).

$$\alpha^{a,\delta} = T_a \overline{\phi}, \tag{2}$$

Then the shape or the free surface is determined by (2).

### 3. CONCLUSIONS

For an inviscid, potential, steady state liniarized gravity channel flow we have developed a mathematical framework to describe the free surface shape. It appears a promising tool for some other hydrodynamics problems.

#### REFERENCES

- [1.] B. N. DATTA, *Numerical Linear Algebra and Applications*, Brooks/Coole Publishing Company, 1995.
- [2.] A. KIRSCH, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996.
- [3.] R. KRESS, Numerical Analysis, Springer-Verlag, New-York, 1998.
- [4.] H.W. ENGL, M. HANKE, and A. NEUBAUER, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordecht, 1996.
- [5.] T. PETRILA, On the inverse(design) problem of a free surface gravity flows, Rev. Roum. Math. Pures Appl. t.XLV (2000) 1.
- [6.] T. PETRILA, Mathematical model for the free surface flow under a sluice gate, Applied Mathematics and Computation 2002}; 125:49-58.
- [7.] T. PETRILA, D. TRIF, Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, Numerical Methods and Algorithms, volume 3, Springer USA, 2005
- [8.] C. R. VOGEL, Computational Methods for Inverse Problems, SIAM, 2002.