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Abstract:  
For apply into another practical cases of power domain same processes and phenomena 
capable to extents is necessary to obtain mathematical relations extremely clears and exacts 
which modulating very well the reality. In this paper the authors’ shown take a few examples 
in deduction of fundamental equation of fluids flow through porous medium. To deduce the 
fundamental equations we take as example: 

 equation of continuity (written in global and local form); 
 equation of energy transfer (global form) will be used some superior mathematical 

notion, respectively: 
The paperwork propose to present the mode in that the superior mathematical notions 
(above mentioned and others too, with strong connection with these), are utilized to deduce 
the fundamental equations viewing the fluids flow through porous medium. Properly, there will 
be deduces the equation of continuity in global and local form (adapted to porous 
medium). 
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1. INTRODUCTION 
 
Definitions of mathematical operators in use: 
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=∇∇=Δ  (operator of Laplace) 

c. Material derivative for a Φ function and for an integral of volume: 
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d. Formulas of Gauss – Ostrogradsky: 

 ∫ ∫∫∫∫∫∫ =⋅⇔=⋅
S V

convention

DS

dVvdivdSvndVvdivdSvn  
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2. Mathematical considerations 
 
In the deducing of fundamental mathematical equation, viewing the fluid 

flowing through porous medium, will be utilized notions of superior mathematics such 
as: 

 differential operators of I and II order (utilizing / operating modes); 
 derivative of material (or substantial derivative) for a )t;r(Φ=Φ or for a 

volume integral: ∫Φ . 
V

dV

2.1. Differential operators of I and II order 
 

The “nabla “ operator (or operator of Hamilton) is defined as: 

Definition 1: 
z
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j
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i
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⋅+
∂
∂

⋅=∇
rr

 (that in physical point of view is a “symbol 

vector”) 
Utilizing modes of “nabla “operator 

Definition 2: k
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j
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gradff
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∂
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∂
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==∇
rr

 (gradient of f scalar function: vector) 

Definition 3: 
z
f

y

f
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==∇  (scalar: divergence of vector function f ) 

Definition 4: 

zyx
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 (vector: rotor of vector function f ) 

Definition 5: ( )
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vv zyx
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⋅=∇⋅  (the material derivative of a vector 

function f ) 

Definition 7: ( )fnngradf
dn
df notdef

∇⋅=⋅=  (scalar function derivative f, in direction on n  

versor) 
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2.2. The operator of Laplace 
 

Definition 9: ( )
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=Δ=∇∇  (definition of operator of Laplace) 

Utilizing modes of operator of Laplace 
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scalar function f) 
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 (vector: the operator of Laplace applied to a 

vector function f
r

) 
Observation:  
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2.3. Material derivative: 
 
2.3.1. Material derivative for a function ( )t;rrΦ=Φ  

Definition 12: ( ) Φ∇⋅+
∂
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=
∂
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=
Φ

v
tt

v
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where:   
- property associated to the 

fluid 
- local variation component 

for Φ property 
- components of velocity: 

( )zyx v,v,vvr  
- convective component for 

Φ property 

  

( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

Φ∇⋅

=
∂
∂

=

∂
Φ∂

Φ=Φ

v

)3,2,1i(
t
x

v

t

t;r

i
i

r

r

 

 
 

2.3.2. Material derivative for a volume integral 
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ddV

dt
d

tt VV
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 (the first form of material 

derivative, for a volume integral) 
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Definition 15: dSvndV
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∫∫∫ Φ⋅+Φ
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⎛
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rr
 (the third form of material 

derivative) 
Observation: In specialty literature, the above three derivative forms of the material 
are knowing as “the transmission theorem” (theorem of Reynolds). 
 

2.4. Formula’s of Gauss-Ostrogradsky 
 

2.4.1. The integral formula of Gauss-Ostrogradsky under vector form has the 
following mathematical expression: 

 

∫∫ ∫∫∫=⋅
S D

dVvdivdSvn rrr
       (1) 

or equivalent (using a notation convection): 
 
        (1’) ∫ ∫ ⋅=⋅

S V
dVvdivdSvn rrr

 
Observation:  

1. The integral formula of Gauss – Ostrogradski, given by relations (1,1’) allows 
the following physical interpretation: “the vector flux field vr , that 

 (total flux of Φ that traverses the S closed surface) is equal to 

triple integral of vr  divergence: 

∫∫ ⋅=Φ
S

dSvn rr

∫∫∫
D

dVvdiv r ”. 

As:  (“flux-divergence” formula)    (2) dVvdivdSvn
DS
∫∫∫∫∫ =⋅

rrr

105  



ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – 2006                                                           TOME IV. Fascicole 2 

2. Geometrical interpretation of “flux-divergence” formula: 
 

 
 

Notations: Oxyz – Cartesian reference points in R3 space 
       S – the closed surface of field (C) 
       V(or D) – the volume of the field (C) 
       dS – element of surface 
       dV – element of volume 
        flux of vector field ∫∫ ⋅=Φ

S
dSvn rr

vr  

      
z
v
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v
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v

vvdiv zyx

∂
∂

+
∂

∂
+

∂
∂

=∇=
rr

 divergence of vr  

Discussion: 
1. If 0vdiv 〉

r
 than: “goes out” more mass from the V volume, as the entered one 

(exists “positive sources”) 
2. If 0vdiv 〈

r
 than: “goes in“ more mass as “comes out” (exists negative sources) 

3. If 0vdiv =
r

 than: didn’t exist mass losses 
 
2.4.2. Lemma of null integral 
 
Enunciation: “ If  is a function that defines a continuous scalar field (or 

vector field) on an arbitrary domain: Di ⊂R3, and dV is the element of volume, than: 
( )r
r

Φ=Φ

  and inversely, (lema of null integral)       (3) ( ) ( ) 0r0dVr
iD

=Φ⇐=Φ
⇒

∫
rr

 
3. Deducing the fundamental equations of fluid flows through porous medium 
 
3.1. The equation of continuity in integral (global) and local form 
 
3.1.1. The continuity equation in integral / local form 

  
 The stage to obtain the continuity equations are: 

1. Its starts from the mass conservation principle, for than we have: 
a. the following enunciation: 
For an elementary volume of porous medium dV, the mass variation in time is 

dt
dm  zero. 

b. 0dVm
dt
d

0
dt
dm

tV
e =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ρ⇔= ∫  (the principle of mass conservation)       (4) 

2. We apply the mass derivative definition for a volume integral, the third form 
for relation (4): 
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∫ ∫∫ =ρ⋅+ρ
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3. For the left member of relation (5) we apply the Gauss-Ostrogradsky theorem 
(that realizes the transaction from the surface integral to volume integral) and 
we obtain: 

( ) ( ) 0dVum
dt
m

0dSvndVm
t V

e
e
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⎦

⎤
⎢
⎣

⎡
ρ∇+
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∂
∂
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 (the equation of continuity in 

integral form (global form)            (6) 
4. For relation (6) we apply the null integral lemma and it will result: 

             ( ) ( ) 0um
dt
m

e
e =ρ∇+

ρ∂ r
                  (7)  

(the equation of continuity for porous medium, written in local form. 
 

3.1.2. Characterization of equation of continuity in local form 
( ) ( ) 0um
dt
m

e
e =ρ∇+

ρ∂ r
 

Discussion: 
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- the equation of continuity in local form for general case 

Case II: If 
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 (the equation of continuity)  

 
3.2. Equation of energy transfer (written in global form) 
3.2.1. Energy transfer 
 
Enunciation: The total energy transfer through S boundary of volume V (from 

porous medium) is equal to dissipated energy (energy losses), as: 
 

∫∫ ρ=⎥
⎦
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where: 
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V V
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rr

rr

          (12) 

 
- total energy: kinetically energy, 

position and pressure 
- dissipate energy: negative energy 
 
 
- fraction forces intensity 
- velocity of filtration in porous 

medium 

 
3.2.2. Observation 
The equation of energy transfer in permanent motion regime becomes: 

 ∫ =ρ
∂
∂

V e

2

0dV
m2
v

t
         (13) 

 
but 
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Than, from relations (13, 14) we can obtain: 

 ∫∫ ⋅ρ=⎥
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4. Conclusion 
 
In this paper I proposed to present the mode in that the mathematical 

apparatus and: 
 The differential operator of I and II order: operator nabla and the 

operator of second order “Δ” (Laplace) together with: 
 the derivative of material ( for a function and for a volume integral) are 

useful to resolve some problems in porous medium. 
 The medium formes from 3 phases: 
 solid phase 
 gases phase (the air) 
 liquid phase (filtration fluid) 

The two last phases are continuing in a net of pores, interconnected pores, 
through that has the fluid a circle to that I deduced the continuity equation, in two 
forms integral (global) and local. 
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