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1. INTRODUCTION 
 

        Let   and 4 f:[a,b] , f C ([a, b])→ ∈ 1 2x , x [a, b]∈  so that 1 1
2a b a 2bx ,  x

3 3
+ +

= =    

then as it is well known the relation [6] is obtained  
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 The relation gives the function: 
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2. MAIN RESULTS 
 

Under the assumptions of the quadrature formula (1) we have the next 
theorem: 

Theorem 1 
Let  . Then: 4f C [a,b] ∈
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 where     , for any  (4)
4 4 4 4, ,  f (x)γ Γ ∈ γ ≤ ≤ Γ  x [a, b]∈  and   3

f (a) f (b)S
b a

′′′ ′′′−
=

−
. 

    If then inequalities are sharp. (4) (4)
4 4x [a,b] x [a,b]

 min f (x),  max f (x)
∈ ∈

γ = Γ =  

Proof.  From (2) integrating by parts we get : 
 

              [ ]
b b
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−
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It is easy to see [2] that we get the equality: 
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a
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−
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     From (5) and (6) we get the equalities: 
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and 
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On the other hand: 

 

                        
b b

(4) (4)
4 4x [a,b]

a a

f (x) (x)dx max (x) f (x) dx
∈

⎡ ⎤− γ ϕ ≤ ϕ − γ⎣ ⎦∫ ∫                              (9) 

 
From (3) we get: 

 

                                                  
4

x [a,b]

(b a)max (x)
3456∈

−
ϕ =                                                              (10) 

 
On the other hand the equality follows: 

 

    ( ) ( )
b b

(4) (4)
4 4 4 3 4

a a

f (x) dx f (x) dx f (b) f (a) (b a) S (b a)′′′ ′′′− γ = − γ = − − γ − = − γ −∫ ∫            (11) 

 
From the relations (7), (9),(10) and (11) it follows : 
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the first inequality of (4). 

We also have: 
 

                   
b b

(4) (4)
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and 
 

( ) ( )
b b

(4) (4)
4 4 4 4 3

a a
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        By analogy from   (8), (10),(13) and (14) we get  
 

         [ ]
b

53 4
1 2

a

15S 23b af (x)dx f (a) 3f (x ) 3f (x ) f (b) (b a)
8 51840

− Γ−
− + + + ≥∫ −                    (15) 

     
The last relation and (12) lead us to the inequality (4). 
To show that inequality (4) is sharp we consider the function f given by the 

relation . 4f (x) (x a)= −
It is easy to see that the equalities (4)f (x) 24=  and  are 

obtained. 
4 4 324,S 24γ = Γ = =

Calculating the three members of the inequality (4) under the given 
circumstances, we notice that this have the common value given by the expression 

51 (b a)
270

−  . 

Hence, we deduce that the inequality (4) is sharp. 
Another relation is given by the next theorem: 

     Theorem 2. Under the assumptions of Theorem 1 we have: 
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b
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 If then the inequalities (16) are sharp. (4) (4)

4 4x [a,b] x [a,b]
 min f (x),  max f (x)

∈ ∈
γ = Γ =  

  Proof. From  (7), (9),(10) and (11)  we have:      
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By analogy from  (8), (13),(14) and (15)  we have: 
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         [ ]
b

54 3
1 2

a

7 15Sb af (x)dx f (a) 3f (x ) 3f (x ) f (b) (b a)
8 51840

Γ −−
− + + + ≤∫ −              (18) 

 
From  (17) and (18) we will have immediately the inequalities (16). 

 To show that the inequalities are sharp we choose and we follow 
the steps of the proof for Theorem 1. 

4f (x) (x a)= −

  
3. A numerical example:  

 Here we consider the integral 
2

1
x

0

e dx∫ . We now compare the result obtained in 

Theorem 2 with the usual Peano error bound [4]: 
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−
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−
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                (19) 

 
 We have , S

2xf (x) e= 3=20e, (on the interval [0,1]). From (16) we 
have:  

4 412,  76eγ = Γ =
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 From (19) we get: 
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It is obvious (20) is better than (26). 
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