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ABSTRACT:  

Euclidean geometry and geometric proof have occupied a central place in mathematics 

education from classical Greek society through to twentieth century Western culture. It is 

proof which sets mathematics apart from the empirical sciences, and forms the foundation of 

our mathematical knowledge. The latter part of the twentieth century, however, witnessed 

the demise of both Euclidean geometry and proof in school mathematics curricula in many 

countries. Debate about proof in school mathematics curricula has also been driven by the 

development and introduction into schools of dynamic geometry software, such as Cabri 

Geometry II and The Geometer’s Sketchpad. With in-built Euclidean geometry tools and a 

drag facility, these dynamic geometry environments have the potential to transform the 

teaching and learning of geometry.   
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1. INTRODUCTION  

  

The lack of success of traditional methods of teaching proof in mathematics 

has prompted researchers to seek new approaches. There is some evidence that 

students are better able to understand and construct proofs if they have been 

involved in a process of conjecturing and argumentation. Mariotti, Bartolini Bussi, 

Boero, Ferri, and Garuti [1] assert that successful proof construction is dependent on 

continuity of reasoning, or “cognitive unity”, between producing a conjecture and 

constructing a proof of the conjecture, with the process of argumentation creating a 

bridge between statements made during conjecturing and statements used in the 

proof construction. Bartolini Bussi [2], for example, as part of a teaching project 

linking history and mathematics, has introduced students to conjecturing, 

argumentation, and proving through a study of the geometry of historical drawing 

instruments. Other recent research studies on the teaching of geometric proof have 

focused on dynamic geometry software. 

A common feature of these two contrasting dynamic environments—the old 

technology of mechanical linkages and historic drawing instruments, and the new 

technology of dynamic geometry software—is the potential for dynamic 

visualization, which may play a key role in students’ production and testing of 

conjectures, as well as in their proof construction. This paper will focus on the role of 

dynamic environments in geometric reasoning, and includes an overview of 

dynamic geometry software and a review of research relating to visualization and 

reasoning with dynamic geometry software. 
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2. DYNAMIC GEOMETRY SOFTWARE   

 
“Dynamic geometry software” has become a generic term for a class of 

geometry software environments, for example, Cabri Geometry II, The Geometer’s 

Sketchpad and Geometry Expert, where geometric objects can be continuously 

transformed on the screen by dragging, with only those features based on 

geometric properties remaining invariant. Accurate measurements can be 

performed, and the software incorporates Euclidean geometry tools, such as angle 

bisector and perpendicular line. The “drag mode” which distinguishes these 

programs from other geometry software, allows a particular drawing to be replaced 

by a continuum of drawings.  

The dragging of an element of a drawing generates an infinity of different 

drawings on the screen while a geometrical figure is the set of geometrical 

properties and relations attached to a drawing that are invariant through the drag 

mode.  Mariotti [1] regards Cabri screen images as representing the direct external 

counterpart of has called a figural concept. Screen images allow the student to 

take into account both the figural and conceptual components, and therefore play 

an important role in geometrical reasoning. Laborde [3] asserts that dynamic 

drawings offer stronger visual evidence than a single static drawing: “A spatial 

property may emerge as an invariant in the movement whereas this might not be 

noticeable in one static drawing”. She notes that when students are engaged in 

problem-solving tasks in dynamic geometry computer environments, “a critical point 

of the solving process is the visual recognition of a geometrical invariant by the 

students, which allows them to move to geometry”. On the other hand, questions 

the impact of readily produced computer images on the learner’s ability to 

generate his/her own mental images, noting that “it is easy to become seduced by 

the visualizations to the extent of thinking that consideration of them is the purpose 

of using them in geometry”.  

Despite the strong feeling that the dynamic imagery associated with use of the 

software has the potential to play a significant part in geometric reasoning, concern 

has been expressed that dynamic geometry software is contributing to an empirical 

approach to school geometry. Instead, traditional geometry exercises have been 

adapted for the computer, and, of greater concern, geometry is being reduced to 

pattern-spotting in data generated by dragging and measurement of screen 

drawings, with little or no emphasis on theoretical geometry: “school mathematics is 

poised to incorporate powerful dynamic geometry tools in order merely to spot 

patterns and generate cases”.  
 

3. VISUALISATION AND REASONING WITH DYNAMIC GEOMETRY SOFTWARE 

  

Although it appears that there are many instances of dynamic geometry 

software being used merely to collect empirical data, it is also possible to use the 

software in ways that encourage geometric reasoning. The construction of 

geometric shapes which retain their properties and relationships when dragged, 

focuses students’ attention on the relationships between properties. Other activities 

may require students to explore, make conjectures, and prove properties for a given 

geometric figure, or to model and investigate a dynamic physical situation in order 

to understand the effect of changing parameters.  
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3.1. Construction tasks 

In a study by Vincent [4] thirteen Year 8 students were given the task of 

constructing drag-resistant geometric figures in Cabri. In the first task, to draw a drag-

resistant rectangle, the majority of students commenced with four carefully placed 

segments which they aligned with the edges of the screen, then measured the sides 

and/or angles to confirm that they had drawn a rectangle. As soon as they dragged 

their rectangles, however, they realized that their drawings did not meet the 

requirements, a realization that challenged them to focus on relationships between 

the properties of the rectangle, and to choose appropriate Cabri construction tools.  

Even when a successful geometric construction of the rectangle had been 

completed, most students continued to use measurement of angles or sides, as well 

as dragging, to check the validity of their constructions. As the students progressed 

to their next construction task, most of them still commenced with by-eye 

constructions before choosing appropriate Cabri construction tools, such as 

Perpendicular bisector and Parallel line.  

In the study reported by Vincent, only one student went straight to a correct 

geometric construction for each of the shapes. Significantly, although she dragged 

each construction briefly to check it before progressing to the next shape, she made 

no measurements to check her constructions. 

In a further task in the same study, pairs of students were asked to replicate a 

given ‘house’ shape as a Cabri figure that would retain its essential properties when 

dragged. As in the case of their earlier constructions, the students commenced with 

by-eye drawings or a combination of by-eye and geometric constructions. The 

feedback from dragging then either confirmed their construction or assisted them in 

understanding the geometry.  
 

3.2. Proof tasks in a dynamic geometry environment 

Hadas, Hershkowitz and Schwarz [5] suggest that the problem of students being 

too readily convinced in a dynamic geometry environment may be overcome by 

the use of problems that lead to unexpected or surprising situations. They designed 

an activity that was intended to create a contradiction between year 8 students’ 

conjectures about the sum of the exterior angles of a polygon as the number of sides 

of the polygon increases, and the results obtained when the students measured the 

angles using dynamic geometry software. The students were first required to measure 

the internal angles of a number of polygons and explain their conclusion. The second 

task asked them to determine by measurement the sum of the exterior angles of a 

quadrilateral, to conjecture what would happen to the sum as the number of sides 

increased, and then to check their conjecture by measurement. In 37 of the 49 

responses (41 written responses from 82 students working in pairs and eight students 

interviewed individually), students conjectured that the sum of the exterior angles 

would increase as the number of sides increased.  

Despite their incorrect conjecture, many of the students were able to explain 

the actual result. Hadas report that even though the students had only just 

commenced their study of Euclidean geometry, nine of the 50 explanations (one 

interview student gave two different explanations), were “complete deductive 

explanations and eight more used partial deductive or inductive explanations”. 

Seventeen of the remaining responses were categorized as “no explanation”, two as 

“inductive”, and sixteen as “visual-variations”. Hadas note that the students ceased 

to be recipients of formal proofs, but were engaged in an activity of construction 

and evaluation of arguments in which certainty and understanding were at stake, 

and they had to use their geometrical knowledge to explain contradictions and 

overcome uncertainty. 
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3.3. Different roles of dragging in a dynamic geometry environment 

Different modes of dragging of dynamic geometry figures may be used 

depending on the information which the user hopes to gain. If, for example, a 

student has constructed an isosceles triangle, dragging may be used as a check 

that the triangle will remain isosceles, confirming that the triangle has been 

appropriately constructed. This is the mode in which dragging was used by students 

A and G during the construction of their “house” shape. Dragging may also be used 

in exploratory tasks, where a figure is dragged in order to satisfy a particular visual 

constraint. This mode of dragging is often used in association with tracing the path of 

a point. Laborde [6], for example, use the example of dragging a triangle ABC until 

angle A is a right angle (see Figure 1), then continuing to drag point A to produce its 

trace while trying to retain the right angle intact. Laborde refer to the path of A as a 

“soft locus”, as it is a visual path obtained by deliberate dragging, rather than a 

locus in the sense of a point being constrained to move along a certain path due to 

a particular property being incorporated into the construction. Laborde suggest that 

this exploration provides a starting point for the conjecture that the path of point A is 

a circle that in turn may lead students to the construction of a circle with the 

midpoint of BC as centre. Dragging may then be used as a check to confirm the 

conjecture. Laborde note that “the final step is the question “Why?” where students 

must use geometry to explain their observation. 
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Arzarello [7] assert that students’ use of dragging when investigating a problem 

in a dynamic geometry environment changes as they develop a greater 

understanding of the problem, and that the different modes of dragging play a part 

in the progression to deductive reasoning. Arzarello describe a study undertaken 

with a class of 27 students who used Cabri to investigate the following problem 

(Figure 2). 

Let ABCD be a quadrangle. Consider the bisectors of its internal angles and 

their intersection points H, K, L, M of pairwise consecutive bisectors. Drag ABCD, 

considering all its different configurations: what happens to the quadrangle HKLM? 

What kind of figure does it become? 
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The students then dragged quadrilateral ABCD so that the four points H, K, L, 

and M remained concurrent, and noticed that the sum of the lengths of each pair of 

opposite sides of ABCD were equal (Figure 4). Based on their previous geometry 

knowledge, they conjectured that this would occur if the quadrilateral were 

circumscribed to a circle. Arzarello note that the students then commenced with a 

circle, constructed a circumscribed quadrilateral, and showed that its angle 

bisectors were concurrent (Figure 5). Arzarello refer to this reversal of reasoning as 

abduction.  

Construction of the angle bisectors and a dragging test confirmed that the 

angle bisectors were concurrent. Arzarello use the terms ascending and descending 

control of meaning to describe the two phases of the students’ exploration of the 

problem. The ascending phase involves the use of wandering and lieu muet 

dragging, and represents the empirical and abductive stages, while the descending 

phase is associated with deductive reasoning and use of the dragging test. In the 

discussion which followed the exploration, one student commented: “We proved the 

same thing but starting from a circle too; we drew the tangent lines and we came to 

the same conclusion. Arzarello note that the students now had “all the elements they 

need to prove the statement”. It is not clear from the report, however, whether the 

students did actually construct a formal deductive proof.  

The middle ability level students were observed to be less systematic in their 

dragging. Arzarello did not report the number of students in the class who were able 

to arrive at the circumscribed quadrilateral conjecture, but they do suggest that 

learning situations could be designed to encourage this purposeful lieu muet 

dragging rather than it depending “only on the ingenuity of some pupils”. The task 

described by Arzarello could, for example, be modified to a more directed activity in 

which students were asked to explore the conditions under which the angle bisectors 

were concurrent. 

�
�(&��
�21����	���
� �
�&�
�#($
	 ��$�
�%� !
�	(�	�"$	�(#
%�'�
%�(�
 
�
������
� )�

�
�



ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL OF ENGINEERING. TOME V (2007). Fascicole 3 

 12 

�

�
�������!	�"
����������������
��������������������

�

3.4. CONNECTING EMPIRICAL AND DEDUCTIVE REASONING  

       IN A DYNAMIC GEOMETRY ENVIRONMENT 

 

Laborde [6] assert that the changes in the solving process brought by the 

dynamic possibilities of Cabri come from an active and reasoning visualization, from 

what we call an interactive process between inductive and deductive reasoning. 

Similarly, Laborde [3] notes that learning geometry involves “not only learning 

how to use theoretical statements in deductive reasoning but also learning to 

recognise visually relevant spatial-graphical invariants attached to geometrical 

invariants”. She reports that observations of students working on a geometry problem 

in pencil-and-paper and dynamic geometry environments showed that the problem 

made sense for the students only after they were able to visually manipulate their 

screen construction. Laborde argues that in a pencil-and-paper environment, 

students’ movement between the spatial-graphical and theoretical domains is 

restricted, whereas the software environment promotes links between the two 

domains.  

Scher [8] asserts that dynamic geometry software can influence the style of 

experimentation and reasoning so that “the boundary between deductive 

reasoning and dynamic geometry becomes blurred: the software finds its way into 

the proof process”. De Villiers [9] notes that in cases of his own personal discoveries 

using dynamic geometry software, actual conviction based on continual 

experimental confirmation preceded the eventual proof, and that manipulation of 

the dynamic geometry construction provided him with the necessary insight to 

develop the proof.  

Although it might be expected that in a dynamic geometry environment 

students would make connections between empirical data and deductive 

reasoning, studies have shown that this is not necessarily the case. Scher describe 

aspects of a classroom research project in which fifteen 15-year-old students of 

above average mathematical attainment were introduced to a culture of 

conjecture and proof in a Cabri environment. Despite a deliberate attempt in the 

research design to facilitate links between inductive and deductive reasoning, it was 

found that many of the students failed to make connections between their empirical 

Cabri work and proofs. 

The teaching experiment consisted of three classroom sessions with three 

follow-up homework activities. During the first session the students used Cabri to 

explore the conditions for triangle congruency. The second session, which 

introduced the students to formal proof writing, drew upon their “actions, 

conjectures and explanations” from the first session and the homework activity.��
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4. CONCLUSIONS  

 

There is a strong belief amongst many mathematics educators that proof should 

be a part of school mathematics, and should be seen by students as fundamental to 

the way mathematics is constructed. The difficulties which students experience with 

proof indicate, however, that new ways of approaching the teaching and learning 

of proof are necessary. There appear to be two main issues associated with these 

difficulties—firstly, students’ motivation and cognitive need for proof, and secondly, 

their understanding of how to construct proofs particularly deductive proofs. The first 

of these implies an acceptance of the need for proof as fundamental to how our 

mathematical knowledge has been built up, and recognition of the purposes of 

proof. Where students are presented with a statement to prove, as was the case for 

many generations of students, construction of the proof frequently becomes an end 

in itself, with the majority of students failing to understand either the need for, or the 

purposes of, proof. Proof-related activities need to be designed so that students 

experience a genuine cognitive need for conviction beyond the conviction 

traditionally engendered by a textbook or the authority of the teacher. Equally 

important, the proving process should offer students the satisfaction of being able to 

explain why their conjectures are true. 

Research suggests that if students are to be successful in constructing proofs, 

they must be allowed to engage in tasks where they can produce their own 

conjectures, and develop their own reasoned arguments through a process of 

classroom argumentation. During the argumentation process, where justifications are 

being continually modified and refined, the continuity that exists between 

conjecturing and proving appears to facilitate the students’ logical ordering of 

statements in their proofs. Classroom argumentation has been criticized, however, on 

the grounds that the natural language of arguments, where the aim is to convince 

at all costs, conflicts with mathematical reasoning. If students are left to themselves 

to argue, this criticism may indeed apply. It is essential, then, that the teacher fulfils 

the role of ‘qualified judge’ with regard to the validity of students’ arguments, and to 

the appropriateness and acceptability of these arguments for the particular level. 
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