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ABSTRACT:

This paper infroduces a computational method for solving the second order nonlinear
differential equation with boundary condition and an integral condition, which describes the
parameters of motion along a flat plate. We describe the theoretical arguments that lead to
the nonlinear differential equation and then we suggest a computational method to
approximate the solution with a series expansion which satisfies the nonlinear differential
equation with its boundary condition and the integral condition. The results we obtained by
simulating the approximate and exact values of the boundary layer parameters for the case
of an incompressible flow along a flat plate are presented comparatively. Calculations have
been done in MathCad.
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1. INTRODUCTION

The theory describing the motion of a perfect fluid is mathematically very far
deveolped and supplies in many cases a satisfactory description of real motions,
such as the motion of surface waves or the formation of liquid jets in air. For example,
the motion of a frictionless and incompressible fluid along a flat plate may describe
the motion of surface winds. This paper introduces a computational method for
solving the second order nonlinear differential equation with boundary condition
and an integral condition, which describes the parameters of motion along a flat
plate. We are going to give in Section 2 the theoretical arguments that lead to the
nonlinear differential equation. We propose a computational method to
approximate the solution with a series expansion which satisfies the nonlinear
differential equation with its boundary condition and the integral condition. In order
to obtain an optimal function corresponding to given conditions, we elaborated a
program under MathCad, as it will be shown in Section 3. The series expansion we
obtained can be compared to the exact solution of motion in Section 4 that
presents an analysis of the results we obtained, and Section 5 includes the
conclusions of the paper.

2. METHODOLOGY: DESCRIPTION OF THE ANALYTICAL METHOD

The existence of fangential stresses and the condition of no slip near solid walls
constitute the essential differences between a perfect and a real fluid. As describes
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H. Schlichting in (6), the motion of fluids of small viscosity such as water and air
agrees very well with that of a perfect fluid, because in most cases the shearing
stresses are very small.

N.I. Akatnov (1) and M.B. Glauert (3) succeeded in calculation of horizontal fluid
velocity.

We consider a flat plate at y = 0 with a stream with constant speed parallel to
the plate, x is the horizontal coordinate and y is the vertical coordinate. u and v are,
respectively, the horizontal and vertical fluid velocities. The pressure does not vary in
the y direction, so the pressure is constant across the boundary layer and its gradient
is given by the pressure gradient outside the boundary layer. For this problem the
governing equations for the fluid motion are

ou  Jdu d’u
oyt M
ox  dy ady
ou + » =0 @
dx dy
u = const, p = const, 3

where 1 and v are the dynamic and kinematic viscosity, and p is the density (u =
vp) .

Due to the viscosity we have the no slip condition at the plate. Furthermore, at
the fluid surface there is no flow across it, which implies the boundary condition

u=v=0 for =0
for 'y @
u=0 for y=oo

We consider the stream function y related to the velocities u and v according
to the equations
oy o ®
dy ox
We would like to find a change of variables which allows us to perform the
reduction from (x, y) to von Mises (4) variables (&, y):
g=x
y=ylxy)
The fluid motion equation (1) changes this form such as

v (2] o
05 dy Iy
The boundary condition (4) lead to the new boundary condition
ul,y)=0, for y=0,
w,y)=0, fory=y._ #e,
where the plate is considered to be the stream y = 0. The value y.. referes to the

volumetric flow rate, which is the volume of fluid which passes through a given
section & = constant per unit time, described by

u

©)

®

0= [ pudy = p[udy = py| = py. ©
0 0 O
In order to obtain the function u, v), the equation (7) with the boundary
condition (8) has to be connected with an integral condition. While the boundary
conditions reflect the studied phenomena according to its known external behavior,
the integral conditions ensure non-null solutions, sometimes they lead to some
ordinary differential equations and they are helpful in finding needed constants (2).
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By multiplication of (7) with ydy, then integrate with respect to y from y = 0 to

v = V.., then with respect to £ from § = 0 to £ = &, an integral condition of form
Ve

[uyay =E, (10)

0
occures, where Eo is a given constant.
With the function changing

u(&.m)= \/%dn) an

1
n=(EpE) sy a2
we reduced the problem that we have now to find the function ¢(r7) which has to
satisfy the differential equation

where

2p*) +n¢’ +20=0 a3)
with boundary condition:
on)=0, forn=0 an
0, forn=n.
and the integral condition:

S
[@lmndn =1 (15)
0

The analitycal method to find the solution of (13) by giving exact solutions and
calculate their Wronskian, leads to

l 2
¢(ﬂ)=gﬂi[1/ni —Z—ZJ 16)

Where 1. =4/40 =~ 2,515 an
The horizontal fluid velocity has the form

2
u(x,n)=éni1/f—§(1/ni—2—zJ (18)
£

1
n=y(Ex)
We propose a method to approximate the solution by giving a series expansion
which satfisfies the differential equation with its boundary condition and the integral
condition.
Let the approximate solution be of form

f(7])=a+b-(l)+c-(l)2+d-(l)3+[)’-\/Z+/1-ln(l+l] ©0)
7. 7. 7. 7.

oo

Where a9

where a=0and b+c+d+ + A1n2 =0 from (14).

3. DESCRIPTION OF THE COMPUTATIONAL METHOD

The function that approximates not only the differential equation with given boundary
condition but the integral condition, have been determined with the help of the MathCad
program we are giving hereinafter. Constants b,c.d, B, A depend on the fluid velocity
function.
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ORIGIN =1 TOL=0.01
ninit =0 nr=3 k=1.nr pinfv, =25+ (k-1)-0.015 bv, =-0.015+(k—-1)-0.015

cv, =—-1.069+(k—1)-0.015 dv, :=-0.012+(k—1)-0.012 fv, =—-1.054+(k—1)-2.108

2.5 —-0.015 —1.069 -0.012 —1.054
pinfv=|2515| bv=| 0 cv=|-1054| dv=| 0 pv=| 1.054
2.53 0.015 —1.039 0.012 3.162
2 3
Fapinf, bed, fy=b-—1—tc.| 1| ya.] | +
n inf M inf n inf
+ 8. |1 +(_b_c_d_’BJ~ln(1+.LJ
n inf In(2) n inf

2

derl f(n,ninf,b,c,d, B) = di f(mninf,b,c,d, B) def(n,ninth,c,d,p) ::ddn2 f@.ninfh,c,d, B
n

ecu(n,ninf,b,c,d, ) =2 der2 f(n,ninf,b,c,d, f)+n-derl f (n,ninf,b,c,d, B) +
+2- f(n,ninf,b,c,d, B)

rez = n « 10
nrc ¢« 1
for kne 1 . nr

Ninf « minfv .4

for kpe l. nr
B« ﬁVkB
for kd € 1 . nr

d ¢ dv 4

for ke € 1 .. nr

C & CV p¢

for kb € 1 .. nr

b « bv

Minit « 0

for iel. n

Nninf - ninit

Ntr; « Ninit + ———————— .
n

condecu “— (lecu (ntri,ninf ,b,c,d, B)|)2

if condecu < 2.55 10 ~°

Ninf
int ej n-f(n,ninf,b,c,d,ﬁ)dﬂ
0

if |int - 1| <o0.01
ninfi ,,. ¢« mMinf
bv hpe < b

CV ppe ¢ C

dv e ¢« d

anrc &~ B

inte ., ¢« int
ecua .. ¢ condecu

nrc ¢ nrc + 1

( MNinfi bv cv dv Bv inte ecua nrc )
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rez={ {104,1} {104,1} {1041} {1041} {i04,1} {1041} {1041} 105}

ninfi=rez, bvi=rez, cvi=rez, dvi=rez, pv=rezs Av:= —bvocv—dv=fy
’ ’ ' ' ’ In(2)
inte:=rez,, nrc:=rez
nrdata =nrc—1 nrdata =104
cond =inte—1 i:=1.nrdata cond; = ‘cond,.‘
ecua = rez, ,
re .= augment(ninf i, bv,cv,dv, pv, v, cond , ecua)
4. RESULTS AND INTERPRETATIONS
The values of constants that fulfill the conditions
7o
J(o(n)nd?]—l <0.01 @n
0
” 2
200?) +7¢' +2¢ <2.55-10° @2)

have been obtained at the §7th computation line, as shown in Figure T:
nne=2.515 b=0 ¢c=-1.054 d=0 B=1054 A=0

ninfi bv oV dw S PR cond acua
1 2 3 4 5 4] T =]
47 2515 -0.014 -1.054 ] 1.054 0022 261210-%| 1.580810-9
43 24815 ] -1.054 ] 1.054 ol 1e0510-5| 2347108
49 2515 i] -1.054 i] 1.054 a| 180810-5| 3824108
a0 25815 1] -1.054 1] 1.054 0| 180510-5| 4245108
a1 2515 ] -1.054 ] 1.054 ol 1e0510-%F| 3.E91-10-8
52 24815 ] -1.054 ] 1.054 ol 1e0510-5| 2458108
53 2515 i] -1.054 i] 1.054 a| 180810-5| 1027108
a4 25815 1] -1.054 1] 1.054 0| 180510-5|7.222-10-19
jala] 24815 ] -1.054 ] 1.054 ol 1e0510-5| 4372109
— a6 24815 ] -1.054 ] 1.054 ol 1e0510-5| 3141108
a7 2515 i] -1.054 i] 1.054 a| 180810-5| 9375108
a8 25815 0.0145 -1.054 1] 1.054 0022 2&87610-2 | 7134108
549 24815 0014 -1.054 ] 1.054 -0.022 | 2587610-3 | 34579105
G0 24815 0014 -1.054 ] 1.054 -0.022 | 287610-3 | 1.11110-5
1 2515 0.015 -1.054 i] 1.054 -0.0z2z2 | zarvE10-3 | 1.20610-5
62 25815 0.0145 -1.054 1] 1.054 -0.022 | 2a87610-2 5.3710-8
B3 24815 0014 -1.054 ] 1.054 -0.022 | 2587610-3 | 2482105
G4 2515 0.015 -1.054 i] 1.054 -0.022 | 2&87TE10-3 | 2922107
(ald] 2515 0.015 -1.054 i] 1.054 -0.022 | 2aTE10-23 | 9.8EE10-7
[a15] 25815 0.0145 -1.054 1] 1.054 0022 2a87610-3 | TA6910-5
BY 24815 0014 -1.054 ] 1.054 -0.022 | 2587610-3 | 2.00110-5

FIGURE 1. Results after computation
Running the presented program we obtained the series expansion of form

2
Ui Ui
=-1.054-| —— | +1.054. |—— 23
A (2.515) 2515 @

which approximates the horizontal velocity of the boundary layer on a flat plate,
given in part a of Figure 2. The exact solution is given in part b.

173



ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA - JOURNAL OF ENGINEERING. TOME V (2007). Fascicole 3

hpproximate Horizontal Veloocitcy

0 0.Z5 0.5 0.75 1.01 1.26 1.81 1.76 Z.01 .26 .52

]

Exact Solution

=2l 1]

O 0.25 0.5 0.75 1.01 1.26 1.51 1.76 2.01 Z.26 .52
l

FIGURE 2. Comparison of approximate and exact values of the boundary layer parameters
for the case of an incompressible flow along a flat plate

Analyzing this two functions, one can notice that the error committed by
replacing the exact solufion with its series expansion computed above is very small,
the method being acceptable in practical cases.

5. CONCLUSIONS

The considerations presented in the paper may lead to the conclusion that the
computational method obtained under the given conditions leads to the same
solution like the exact one that describes the behavior of the boundary layer
parameters for the case of an incompressible flow along a flat plate. This may be
used in calculations of thermic parameters of motion that implies an ordinary
differential equation and an integral condition.
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