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ABSTRACT 
This paper aims at reviewing some Moroccan industrial applications of wavelet especially in 
the dynamic identification of a process model using Haar wavelet mother response. Two 
recent Moroccan study cases are described using dynamic data originated by a distillation 
column and an industrial polyethylene process plant. The purpose of the wavelet scheme is 
to build on-line dynamic models. In both case studies, a comparison is carried out between 
the Haar wavelet mother response model and a linear difference equation model. Finally it 
concludes, on the base of the comparison of the process performances and the best 
responses, which may be usefull to create an estimated on-line internal model control and its 
application towards model-predictive controllers (MPC). All calculations were implemented 
using AutoSignal Software. 
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1. INTRODUCTION 
 
Multiphase systems and chemical reacting flows are the basis of several 

important applications in chemical engineering. They often lead to field quantities 
that develop sharp gradients and high localized phenomena. These include strong 
non linearity’s, coupling effects, and mass transfer resistance and fluid dynamic 
dispersion phenomena. Traditionally, the Fourier transform has been used to 
diagnose faults in the process operations and to identify processes in the frequency 
domain. Its effectiveness has been of great importance when solving problems in 
process operation and control, process modelling and simulation, identification and 
sensor data interpretation. Fourier transform is historically based on mathematical 
form that will facilitate heat transfer study. Nowadays, and instead of using a Fourier 
transform, a mathematical tool for the time series analysis, called wavelets [1] is 
being used to compress signals. Identification a process is a followed strategy to 
obtain an originating mathematical model of experimental data. Series of tasks must 
be carried out to identify a process model starting with the design of the 
experimental data collect, data processing that includes denoising and 
normalization, pattern determination and analysis [2]. Wavelet analysis is an 
emerging field of applied mathematics that has provided new tools and algorithms 
for solving such problems as are encountered in fault diagnosis, modelling, 
identification, and control and optimization of chemical systems, where raw sensor 
data have to be processed into meaningful information [3]. The theory has acquired 
the status of a unifying theory underlying many of the methods used in physics and 
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signal processing. Wavelet may find many possible applications of time-frequency 
decomposition to the discipline of chemical engineering. In engineering process 
industry, signal processing and control is widely used and wavelet transform appears 
naturally as a useful tool [4]. We choose the Haar wavelet basis for its smoothness 
and compact support [5]. 
 

2. SIGNAL ANALYSIS AND WAVELET TRANSFORM 
 
2.1. THEORICAL APPROACH 
 
Traditionally, Fourier transform has been used to process stationary signals 

acquired by computers. In this way, the representative spectrum of frequencies is 
obtained from the time series produced during acquisition of the signal by the 
computer. For non stationary signals, typical of engineering processes, the existing 
methodologies have not been fully developed. Windowed Fourier Transform, also 
called short-tine Fourier Transform, was first applied using a Gaussian type window 
[6].  

For a given signal , a conventionally defined signal ( )tf ( )0ttg −  is applied to a 
window of time that moves along with the original signal, forming a new family of 
functions: ( ) ( ) ( )00 , ttgtfttfg −= Functions formed this way are centred on and have 

a duration defined by the characteristic time window of the function . Windowed 
Fourier transform is thus defined as: 

0t
( )tg

[ ] ( ) ( ) dtettgtftwF jwt
g

−
+∞

∞−

−= ∫ 00,                                                  (1) 

This transform is calculated for all values and it gives a representation of the 
signal  in the time frequency domain. If a space function 

0t
( )tf ( )xf  instead of a time 

signal is considered, a representation is given in the space- frequency domain. 
However as a windowed Fourier transform represents a signal by the sum of it sine 
and cosine functions, it restricts the flexibility of the function  or ( 0ttg − ) ( )0xxg −  
making a characterization of a signal and simultaneous location of its high frequency 
and low frequency components difficult in the time-frequency domain or the space-
frequency domain. Wavelets transform was developed to overcome this deficiency 
of windowed Fourier transform in representing non-stationary signals [7]. Wavelets 
transform is obtained from a signal by dilatation-contraction and by the translation of 
a special wavelet within the time or space domain. The expansion of this signal into 
wavelets thus permits the signal’s local transient behaviour to be captured, while the 
sine and the cosines can only capture the overall behaviour of the signal as they 
always oscillate indefinitely [8]. 
 

2.2. SIGNAL ANALYSIS AND THE HAAR WAVELET 
 
In the Fourier analysis, every periodic function having a period of π2  and an 

integrable square is generated by an overlay of exponential complexes,  
( ) ,...2,1,0, ±±== nexW jnx

n  
obtained by dilations of the function  

( ) ( ) ( )nxWxWexW n
jx == : . 

Extending the idea to space for Ψ  integrable square functions, the following is 
defined: 
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The function Ψ  is called a mother wavelet, where a the scale is factor and b is 
the translation parameter. The family of simpler wavelets, which will be adopted in 
the present work, is that the Haar wavelet [9]:  

( ) ( ) ( ) [ ]1,00,1
2
11,

2
101 ∉=Ψ≤≤−=Ψ≤≤=Ψ xifxxifxxifx  

For the one-dimensional no stationary function ( )xf  that decrease to zero 
when ∞→x , the following assumption is normally adopted: 

( ) ( qxx p
p

qp −Ψ=Ψ
−

22 2
, )                                               (3) 

The scale factor of is called the localization or dyatic translation and  is 
the translation index associated with the localization, where 

qp−2 k
p  and . Wavelet 

thus defined are orthogonal, i.e., 
Zq∈

mqlpmlqp ,,,, . δδ=ΨΨ for Zmlqp ∈,,, where .  is equal 

to the scalar product and δ refer to the delta function of [10]. Thus the function 
 can be rewritten as follows:  

Dirac
( )xf

( ) ( )∑ ∑
+∞

−∞=

+∞

−∞=

Ψ=
p q

qpqp xcxf ,,                                                (4) 

The values of the constant are obtained by wavelet transform in its discrete 
form. Then is expanded into a series of wavelets with their coefficients obtained from  

qpc ,

( ) ( )dxxxffc qpqpqp ∫
+∞

∞−
Ψ=Ψ= ,,, .                                         (5) 

The wavelet transform can also be calculated using special filters called 
quadrature mirror filters [11]. They are defined as a low-pass filter, associated with the 
coarser scale, and a high-pass filter to characterize the details of the signal. The 
signal then is described as: ( )xf

( ) ( ) ( )∑ ∑∑
>

Ψ+Ψ=
0

00 ,,,,
pp q

qpqpqp
q

qp xdxcxf                                 (6) 

where                                                                                             (7) ( ) ( )dxxxfc qpqp ,, 00
Φ= ∫

+∞

∞−

( ) ( )∫
+∞

∞

Ψ=
_

,, dxxxfd qpqp                                                   (8) 

In the expansion of  by equation 6, the first term represents the 
approximation of the signal and the second the signal details, filtered by the 
approximation. The function 

( )xf

( )xqp ,0
Φ  is denominated a scale function or father 

wavelet, and it is responsible for obtaining the approximation of the signal, while the 
mother wavelets,  are responsible for the generation of the details filtered by the 
approximation [12]. For the family of Haar wavelets, the scale function is 

 and 

qp,Ψ

( ) [ 1,01,0
∈=Φ xifxqp ] ( ) [ ]1,00,0

∉=Φ xifxqp . The mother wavelets, responsible for 
the details in the Haar family, are expressed as: 

( ) ⎟
⎠
⎞

⎜
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and , otherwise. ( ) 0, =Ψ xqp

 
3. CASES OF THE  STUDY 
 
3.1. THE DISTILLATIN COLUMN RESPONSE 
 
Distillation columns are one of the most 

commonly used thermal separation units and 
have been used for many centuries. Their 
operation is based on the difference in 
boiling temperatures of the liquid mixture 
components, and on recycling counter-
current gas-liquid flow. The properly 
organized temperature distribution up the 
column results in different mixture 
compositions at different heights [13].  

Temperature values collected at the 
bottom of the third plate of a distillation 
column (as shown in figure 1) are illustrated in 
figures 2 and 3 . All calculations were 
performed in AutoSignal environment 
windows software [14]. 

 
Figure 1. Temperature data in bottom and 

third plate of distillation column  

  
Figure 2. Identification of the third plate model 
using Wavelet Haar order 3 (16 coefficients) 

Figure 3. Wavelet Haar order 5  
using 64 coefficients 

 
When increasing the number of wavelets coefficients, the obtained signal is 

similar to the original one but it is less compressed (it takes less memory space). 
Nevertheless, the third plate response is characteristic of a linear model with dead 
time. If the dead time is eliminated, the signal can be approached with a linear third 
order differential equation written as: 
 

( ) ( ) ( ) ( ) tPtTtTtTtT 5.2473088.12081.144042.75100 ( )+−+−+−=            (11) 
 

where  is vapour pression applied in the calderin of the column. Equation 11 was 
used to obtain the approximation illustrated in figure 4. 

( )tP
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Figure 4. Third order linear model approximation 

 
Not all processes have linear behaviour because the dead time and the 

saturation are two non linearity’s that can be modelled perfectly using wavelets. 
Temperature in the bottom of the distillation column presents also dead time and 
saturation as two non linearity’s [15]. Figure 5 shows the comparison of the bottom 
temperature using removal of dead time and approximating to a linear model, and 
simultaneously, comparing them to a Haar wavelet approach of several 
compression relations. It must be noticed that if other kind of wavelet is used, the 
approach is better since that the Haar wavelet reconstructs in a stepped way [16]. 

 
Figure 5. Comparing the natural response curve to the linear model and the wavelets model 

 

 
Figure 6. Comparatives responses of the original and the model. The pressure and its wavelet model 

follow the same tendency. 
 
3.2 THE POLYETHYLENE ELABORATION PROCESS 
 
Finally, figure 6 illustrates experimental values of pressure variation in a 

polyethylene elaboration process and it comparison to the linear and wavelets 
model. Dynamic identification with Haar wavelets is better than linear type 
identification. 
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4. CONCLUSIONS 
 
In spite of its simplicity, the Haar wavelet had a better identification response 

than the linear model. Once the system identified, it is possible to eliminate 
components that represent noise in the system. This way allows better fidelity of the 
model. Eliminating the dead time does not guarantee a better approach to the 
linear model since there will be other non linerities that deviate the results. 
Nevertheless, in the case of on line identification, it is better to use wavelets than 
linear models for the following reasons: 

 Not all processes are linear. 
 It will be not possible to carry out step type disturbances during the process 

operations in all manufacturing plants. 
 Wavelets give more precise results. 
 It does not matter that the model calculates sixteen wavelet coefficients 

instead of three in the case of first order approach with dead time. This latter 
is much more appropriated to carry out simulated control studies. But it 
works poorly for on line identification. 

The results of wavelets identification, even in the simplest way, make in the 
model predictive control (MPC) type appropriate and advantageous. 
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