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ABSTRACT 
In this article attempt is made to study the fracas due to a thermal line load in a 
homogeneous transversely isotropic half-space in linearized theory of generalized thermo 
elasticity. A combination of Fourier and Laplace transform technique is applied to obtain the 
solutions of governing equations. The transformed solutions are then inverted using Cagniard 
technique for small times. The results obtained theoretically, for temperature, thermal stresses 
are computed numerically for a crystal of zinc, and found that variations in stresses and 
temperature are more prominent at small times and decrease with passage of time. The 
results obtained theoretically are represented graphically. 
KEY WORDS: Transversely isotropic, thermo elasticity, thermal stresses, Cagniard 
technique. AMS Subject Classification: 74A15, 74F05, 74H45, 74K20, 74L05 
 
 
 

1. INTRODUCTION 
 

Study of thermally induced disturbances in anisotropic bodies is essential for a 
comprehensive study of their response due to an exposure to temperature fields, which may 
in turn occur in service or during the manufacturing stages. For example, during the curing 
stages of filament bound bodies, thermal disturbances may be induced from the heat 
buildup and cooling processes. The level of these disturbances may well exceed the ultimate 
strength. The theory of thermoelasticity Nowacki [15,16] that includes such thermal 
disturbances has aroused considerable interest in the last century, but a systematic research 
started only after thermal waves—called second sound—were first measured in materials like 
solid helium, bismuth, and sodium fluoride.  

Thermoelasticity theories, which admit a finite speed for thermal signals, have been 
receiving a lot of attention for the past thirty years. The literature dedicated to such theories is 
quite large and its detailed review can be found in Chandrasekharaiah [3, 4]. Lord and 
Shulman [13], Green and Lindsay [8], and Hetnarski and Ignaczak [12] are among the non-
classical theories, which are common use in engineering applications. 

 Lord and Shulman theory introduces a single time constant to dictate the relaxation of 
thermal propagation, as well as the rate of change of strain rate, and the rate of change of 
heat generation. Green and Lindsay theory, on the other hand, the thermal and thermo-
mechanical relaxations are governed by two different time constants. Dhaliwal and Sherief 
[6] extended theory of generalized thermoelasticity to anisotropic solids. Hawwa and Nayfeh 
[11] studied the general problem of thermoelastic waves in anisotropic periodically laminated 
composites. Verma and Hasebe [18, 19] studied the wave propagation in plates of general 
anisotropic media in generalized thermoelasticity. Verma [20, 21] studied thermoelastic 
problems by considering equation for anisotropic heat conducting solids with thermal 
relaxation time. Harinath [9, 10] considered the problems of surface point and line source 
over a homogeneous isotropic thermoelastic half-space in thermoelasticity. De Hoop [9] 
modified and used a method originally presented by Cagniard [2] to solve the disturbances 
that are generated by an impulsive, concentrated load applied along a line on the free 
surface of a homogeneous isotropic elastic half-space. Nayfeh and Nasser [14] developed 
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the displacements and temperature fields in a homogeneous isotropic generalized 
thermoelastic half-space subjected on the free surface to an instantaneously applied heat 
source using the Cagniard-De Hoop [9] method Sharma [17] studied the Transient 
Generalized thermoelastic waves in a transversely isotropic Halfspace using the same 
method.  
  In this paper, Cagniard-De Hoop method is used to study the transient behavior of 
homogeneous transversely isotropic linearized thermoelastic material. The motions are 
caused in the half-space by a thermal line load on its free surface. The thermal relaxation 
time of the heat conduction is also included in the analysis to ensure that thermal wave 
speed remains finite. In using Cagniard-De Hoop method, the strong coupling between 
thermal and elastic motions, which, however, suggests that we seek solutions for small values 
of the thermoelastic coupling coefficient. Therefore we express solutions in terms of a small 
thermoelastic coupling coefficient. Only the approximated short time solutions are 
considered for thermoelastic response due to the existence of the thermal damping term, 
which makes the short time solution meaningful. A combination of Laplace and Fourier 
transforms is applied to obtain the solutions of governing equations of transversely isotropic 
thermoelastic solid half-space, which are subjected to thermal line load on its free surface. 
The resulting equations are then inverted using Cagniard-De Hoop small times. The results 
obtained theoretically have been verified numerically and illustrated graphically for single 
crystal of zinc. 
 

2. BASIC GOVERNING EQUATIONS AND FORMULATION 
 
The basic field equations of generalized thermoelasticity governing thermoelastic 

interaction in homogeneous anisotropic solids proposed by Dhaliwal and Sherief [6] are:  
Equation of Motion 
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the summation convention is implied; ρ  is the density, t is the time, ui is the displacement in 

the xi direction, Kij  are the thermal conductivities, Ce  and τ0   are respectively the specific 
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where 
         β 1 = (C11 + C12) α1 + C13 α3;  β 3 = 2 C13 α1 + C33 α3,            (2.8) 

Cij being the elastic parameters, Ce and τo are the specific heat at constant strain and 
thermal relaxation time respectively.  K3, K1 and α3, α1 are the coefficients of the thermal 
conductivities and linear thermal expansions respectively, along and perpendicular to axis of 
symmetry.   

Using the dimensionless quantities (Appendix-A) into equations and the plane of 
isotropy is perpendicular to z-axis, which is normal into the half-space. The disturbance in the 
beginning undisturbed elastic thermoelastic solid is caused by abruptly applied thermal line 
load on the free surface. Thermal Load applied is symmetrically with respect to the y-axis. 
Considering fixed coordinate system Oxyz with origin being any point of the plane boundary z 
= 0. The boundary conditions (on suppressing the primes throughout) 

τ zz = 0; τxz = 0; 
∂
∂

T
z  = 0Q δ (x) f (t), 

 at the surface z = 0, become  
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                                                       ∂
∂
T
z  = 0Q∗ δ(x) f (t),                  (2.11) 

where 0Q∗ = v1 0Q /To.  The condition at infinity requires that the solutions be bounded as z 
becomes large. Finally, the initial conditions are such that the medium is at rest for t < 0. 
If we take 

C11 = C33 = λ + 2 μ; C44 = 2μ; C13 = λ, 
 K3 = K1 = K; α1 = α3 = αt; β1 = β3 = (3λ + 2 μ)αt,                      (2.12)  

 

then equations (2.1) to (2.3) reduce to the  corresponding form  for an isotropic body, with 
Lamé’s parameter λ, μ; thermal conductivity K and the coefficients of linear thermal 
expansion αt.   
 

3.  ANALYSIS 
 
To obtain the solution of the problem following Nayfeh and Nasser [14] and Sharma 

[17], following we apply the Laplace transform with respect to time and the exponential 
Fourier transform with respect to the x-co-ordinate to the system of equations (2.7) to (2.11). 
The appropriate solution of the resulting equation is then constructed and subsequently 
inverted. The Laplace and the exponential Fourier transforms are defined respectively as 
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To obtain solutions that are bounded as z→ ∞ , we require that mk have positive real 
parts.  We observe that equation (3.9) pertain to the coupled dilatational, distortional and 
thermal waves.  To find explicit expression for m1, m2 and m3, we seek solutions of (3.9) for 
small values of the thermoelastic coupling 1ε , coupling coefficient between the field of 
temperature and the field of strain, for the plane state of strain. Since coupling coefficient �is 
a physical characteristic of the material, so the effect of damping and dispersion of 
thermoelastic waves depends exclusively on the value of this coefficient. The coupling term is 
generally small for all materials and therefore higher order terms holding it can be neglected. 
Neglecting the coupling term simplifies the analysis without noticeable effect on the 
frequency spectrum as we saw earlier. If we look at the transforms we observe that the 
expression for m1, m2, m3 and denominators of jka , are of higher orders, so the application of 
inverse transforms is complicated and impractical. On the other hand, by neglecting the 
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terms holding 1ε , inverse transforms can be found from the tables of Laplace transforms, in 
that case, however, the sense of the solution will be lost, because the effect of coupling of 
the two physical fields will be neglected. We proceed to a solution by linearizing the term 
holding 1ε , under the assumption that the value of the term the term holding 1ε , is smaller 
compared to other terms, the expression can be reduced. Therefore following Nayfeh and 
Nasser [14], assuming that 1ε is sufficiently small, after the first order of approximation in 1ε , we 
have  
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i j k≠ ≠ = 1, 2, 3.  
If the temperature and strain fields are not coupled with each other then the 

thermoelastic coupling constant 1ε  is identically zero. In this case m30    splits from m10 and m20. 
From (3.10c) m30   correspond to the thermal waves, whereas m10 and m20 corresponds to the 
coupled longitudinal and transverse elastic waves, and also from m10 and m20   it is clear that 
elastic waves are not affected by thermal variations and thermal relaxation time but are 
affected by due to the anisotropy of the medium. If the strain and temperature fields are 
coupled with each other then from (3.12) we see from that m1, m2 and m3, get modified due 
to the thermo-mechanical coupling effects and anisotropy of the medium under study. 
Equations (3.3) to (3.5) with the help of equations (3.12) yield 
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                                           i j k≠ ≠ = 1, 2, 3. Taking kji  and  ,  in the cyclic order. 
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4. INVERSION OF TRANSFORMS   

          
Now Using Cagniard-De-Hoop method to evaluate the right hand side of equation 

(3.12), each integral in (3. 12) is recast into the Laplace transform of a known function, and 
thus allowing us to write down the inverse transform by inspections. Mathematically this 
procedure is based on a rather elementary observation that 
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To apply this technique a complete description is given in De-Hoop [16], Cagniard [17] 
and Fung [20]. Following this technique, Laplace transform parameter p is to be isolated as 
required in (4.1) and (4.2). Due to existence of damping term in the temperature field 
equation (2.9), isolation of p is impossible Nayfeh and Nasser [14] and Sharma [17].  However, 
this isolation of p may be achieved for small time, i.e. if we assume p to be large.  Hence, an 
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We take f(t) =  H(t), the  unit step  function so that surface of the  half space is  subjected 

to a  thermal source of  magnitude  
p
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where Aij  and Bij  can be determined in a straight forward manner. 
 

5. INTEGRAL’S EVALUATION AND SINGULARITY 
 

In the process of evaluating above integrals, from equations (4.3) to (4.6), we have 
discriminate in (4.5) for singularities  

 ( ) ( ) ( )}
12 22 2 2

1 2 2+ 4 1 1 0P J c c cη η η− + + =              (5.1) 

and 00 =kα ,  k =1, 2, 3, it follows that in calculating (4.12) to (4.15), taking η-as a complex 
variable and distort the path of integration in the η-plane, we have obtained the same poles 
and branch points Branch points:  

η = ±  i,   η = ±
2c

i ,  η = ±  i τo , k =1, 2, 3   which are same as obtained by  Nayfeh 

and Nasser [19] and Sharma [17], and for isotropic medium which reduce to,  

            η = ±  i, η   = ±
2

1
v

iv ,  η = ±  i 0τ   ,                                            (5.2) 

where 1v  and 2v are the velocities of dilatational and distortional waves. Again first equation 

(5.1) is a quadratic equation in 2η  and has real roots if discriminant of this equation is positive.  
Further, if  

)1(2 221 +> cccPJ , 2
21

2 4 ccP >                            (5.3)         

then equation (5.1) cannot have positive roots in 2η . Therefore assume that equation (5.1) is 
hold and its discriminant is positive, thus the quartic equation has only pure imaginary pure 
roots.  

Other singular points of the integrands are their poles, which are given by 
0))()(( 2

10
2
30

2
30

2
20

2
20

2
10 =−−− αααααα  ,                                 (5.4)  

00 =kα  ,                         (5.5)         
                                                                 and  ′Δ  (η) =0                                        (5.6)           

The equation (5.4) provides 2
30

2
20

2
10 ααα == . This does not hold true as Re ( 0kα ) ≥ 0 and 

302010 ααα ≠≠ ,  therefore this yields no singularities. The poles of (5.5) coincide with branch 
points   (5.2). Now to find poles given by (5.6), on taking �����i/V, �rationalize and 
simplifying it reduces to Eq. (45) of Verma 20] giving phase velocity for isothermal Rayleigh 
waves in a transversely isotropic half-space  in thermoelasticity.  It can easily verified (see 
Abubakar [01]) that under the assumption 2 cJP > , only one root of the resulting equation 
(see Eq. (45) Verma [20] of satisfy (5.6) on the upper leaf of the Riemann surface and that is 
the root which lies in the range 2

2  0 cV << . Let it is 2
RV , where VR is the Rayleigh waves 

velocity in uncoupled theory of thermoelasticity, which are same as obtained by Verma [20]. 
Thus under the assumption made, the singularities of integrands (4.13)-(4.15), which lie on the 
upper leaf of the Riemann surface are  

η = ±  i,   η = ±
2c

i ,  η = ±  i τo   , η = ±  iη0,   η = ± ±  i/VR.                             (5.7) 

 In the special case of τo < 1 and VR2 = 0.1834 for zinc crystal.  The path of integration is 
long the real axis. To make the functions of � single valued in the complex plane of 
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integration, we make a cut joining the singularities 
2c

i  and 
2c

i−  in the �-plane. First 

we consider one of the integrals (4.12) - (4.15), say   
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p
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π
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Using equations (4.1) and (4.2), we get    
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Similarly               
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Thus, we have           
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,           (5.12)            

where s1 = 1
2 3

2 1

1 ,    ,   os s kc c
τ= =  are the slowness of the transverse dilatational 

and the thermal waves, respectively. 

Similarly                      
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,                             (5.14)         

where ηk, k =1, 2, 3 can be determined from t = xiz kηα +k0 . When the thermoelastic 

coupling constant ε1 vanishes, then temperature field also vanishes. 
 

6. NUMERICAL RESULTS AND DISCUSSIONS  
 
In this section, the results obtained theoretically, in the above sections, for temperature 

and stresses are computed numerically for a single crystal of zinc for which the physical data 
is given as  

c11 = 1.628 × 1011 Nm-2, ρ = 7.14 × 103 kmg-3, w* = 5.01 × 1011s-1, ε1 = 0.0 221, 
c1 = 0.385, c2 = 0.2385, c3 = 0.549, k = 1.0, β = 0.9, τ0 = 0.02, T0 = 2960K, 
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The computations were carried out for four values of relaxation time namely τ = 0.05, 

0.1, 0.2, 0.5 at the surface z = 0. The results for temperature (T), horizontal stress (τxx), vertical 
stress (τzz) and shear stress (τxz) with respect to distance are shown in Figures 1, 2, 3 and 4 
respectively.  

From the figures it is observed that the vertical and shear stresses at the surface are 
positive and decreases in magnitude with the passage of time whereas the horizontal stress 
varies from negative value to positive one with the passage of time.  The temperature also 
increases from negative value to positive value with the passage of time. Also the variations 
of all these quantities are more prominent at small times and decrease with passage of time, 
which established the fact that the second sound effect is short lived. All these quantities 
vanish when it move away from the heat source, at certain distance at all times, which shows 
the existence of the wave fronts and ascertain the fact that generalized theory of 
thermoelasticity admits finite velocity of heat. 
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eC
Kk

ρ
1

1 = and 2
1

11
1 )(v

ρ
C

= are the thermal diffusivity and  the  velocity of compressional  waves in the 

x-direction, respectively.  Here ε1 is the thermoelastic coupling constant. 
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