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ABSTRACT: 
An attempt has been made to investigate the behavior of a magnetic fluid based squeeze 
film between two curved rough circular plates where in, the curved upper plate lying along 
the surface determined by an exponential function approaches the stationary curved lower 
plate along the surface generated by a hyperbolic function. A magnetic fluid is used as a 
lubricant in the presence of an external magnetic field oblique to the radial axis. The 
roughness of the bearing surface is characterized by a stochastic random variable with non-
zero mean, variance and skewness. The Reynolds equation governing the film pressure is 
averaged with respect to the random roughness parameter. The associated non-dimensional 
differential equation is solved with suitable boundary conditions in dimensionless form, in order 
to obtain the pressure distribution.  This is then used to derive the expression for the load 
carrying capacity thereby, leading to the way for the calculation of response time. The results 
are presented graphically as well as in tabular form. The results establish that the 
performance of the bearing system improves significantly as compared to that of a bearing 
system working with a conventional lubricant. It is seen that the pressure, the load carrying 
capacity and the response time substantially increase with increasing magnetization 
parameter. This investigation tends to suggest that albeit the bearing suffers in general due to 
transverse surface roughness, there exist some scopes for obtaining better performance in the 
case of negatively skewed roughness, by suitably choosing the curvature parameters of both 
the plates. In addition, variance (-ve) adds to the positive effect introduced by negatively 
skewed roughness. 
KEYWORDS:  
Magnetic fluid, Squeeze film, Pressure distribution, Roughness, Reynolds equation, Load 
carrying capacity  
 
 
 

1. THE INTRODUCTION 
 
The behavior of squeeze film between various geometrical configurations of flat 

surfaces was analyzed by Archibald [1]. The squeeze film phenomena between curved 
plates considering curvature of the sine form and keeping minimum film thickness as constant 
was presented by Hays [2]. Murti [3] discussed the behavior of squeeze film between curved 
circular plates describing the film thickness by an exponential expression. The analysis was 
based on the assumption that the central film thickness, instead of minimum film thickness as 
assumed by Hays [2]; was kept constant. It was shown that the load carrying capacity rose 
sharply with the curvature in the case of concave pads. Gupta and Vora [4] dealt with the 
corresponding problem in the case of annular plates. In this investigation lower plate was 
taken to be flat. Ajwaliya [5] extended the analysis of this study by taking the lower plate also 
to be curved. Wu [6] and [7] investigated the squeeze film performance for two types of 
geometries namely, annular and rectangular wherein, one of the surface was porous faced. 
Prakash and Vij [8] studied several bearing configurations such as circular, annular, elliptical, 
rectangular and conical. They made a comparison between the squeeze film behavior of 
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various geometries of equivalent surface area and concluded that the circular plates had 
the highest transient load carrying capacity. 

All the above studies dealt with conventional lubricant. Verma [9] investigated the 
application of a magnetic fluid as lubricant. The magnetic fluid comprised of fine surfactant 
and magnetically passive solvent. Subsequently, the magnetic fluid based squeeze film 
behavior between porous annular disks was presented by Bhat and Deheri [10]. It was 
established that the application of magnetic fluid lubricant enhanced the performance of 
the squeeze film behavior. However, here the plates were considered to be flat. But in actual 
practice the flatness of the plate does not endure owing to elastic, thermal and uneven wear 
effects. With this end in view, Bhat and Deheri [11] analyzed the behavior of a magnetic fluid 
based squeeze film between curved circular plates. The magnetic fluid based squeeze film 
behavior between curved plates lying along the surfaces determined by exponential and 
hyperbolic function was subjected to investigation by Patel and Deheri [12] and [13] 
respectively. It was found that the application of magnetic fluid lubricant improved the 
performance of the bearing system.  

It is a well-established fact that the bearing surfaces develop roughness particularly, 
after having some run-in and wear. The roughness appears to be random and disordered 
and does not seem to follow any particular structural pattern. The randomness and the 
multiple roughness scales both contribute to complexity of the geometrical structure of the 
surface. In inevitably, it is this complexity which contributes most of the problems in the 
investigation of friction and wear. The random character of the surface roughness was 
recognized by several investigators, who resorted to a stochastic approach in order to 
mathematically model the roughness of the bearing surfaces (Tzeng and Seibel [14], 
Christensen and Tonder [15], [16] and [17]). Tonder [18] theoretically analyzed the transition 
between surface distributed waviness and random roughness. Christensen and Tonder [15], 
[16] and [17] modified and developed the approach of Tzeng and Seibel [14] and proposed 
a comprehensive general analysis both for transverse as well as longitudinal surface 
roughness based on a general probability density function. The method adopted by 
Christensen and Tonder [15], [16] and [17] formed the basis of analyzing the effect of surface 
roughness on the performance of bearing system in a number of investigations (Ting [19], 
Prakash and Tiwari [20], Prajapati [21], Guha [22], Gupta and Deheri [23]). The probability 
density function for the random variable characterizing the surface roughness was assumed 
to be symmetric with mean of the random variable equal to zero, in these above analyses. 
However, in reality due to non-uniform rubbing of the surfaces, the distribution of surface 
roughness may indeed be asymmetrical. With this end in view, Andharia, Gupta and Deheri 
[24] discussed the effect of transverse surface roughness on the performance of a 
hydrodynamic squeeze film in a spherical bearing using general stochastic analysis. It was 
observed that the effect of transverse surface roughness on the performance of the bearing 
system was mostly adverse. Recently, Deheri, Patel and Abhangi [25] discussed the behavior 
of squeeze film performance between magnetic fluid based curved circular plates. 

It has been proposed to study the magnetic fluid based squeeze film between curved 
transversely rough circular plates wherein the upper plate lies along the surface determined 
by an exponential function while the lower plate lies along a surface determined by a 
hyperbolic function. 
 

2. THE ANALYSIS  
  
The configuration of the bearing is shown in Figure 1. The bearing surfaces are assumed 

to be transversely rough. The thickness h(x)of the lubricant film is taken as  

sh(x)hh(x) +=  
where (x)h is the mean film thickness while  is the deviation form the mean film thickness 

characterizing the random roughness of the bearing surfaces. The deviation  is considered 
to be stochastic in nature and described by the probability density function 

sh

sh

cshc),sf(h ≤≤−  
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where c is the maximum deviation from the mean film thickness. The 
meanα , the standard deviation  and the parameter  which is 
the measure of symmetry associated with random variable h  are 
governed by the relations  
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Figure 1: Configuration 
of the bearing system 

where  is the central distance between the plates, B and C are the curvature parameters 

of the corresponding plates. The central film thickness h(r) then is defined by  
0h

⎥
⎦

⎤
⎢
⎣

⎡ +
+

−−= 1
Cr1
1)2Brexp(0hh(r)  

 Axially symmetric flow of the magnetic fluid between the plates is taken into 
consideration under an oblique magnetic field 

( )z),H(r)sinφ(rz),0,,H(r)cosφ(rH =  

whose magnitude H vanishes at ar = ; for instance;  where k is a 
suitably chosen constant so as to have a magnetic field of required strength, which suits the 
dimensions of both the sides. The direction of the magnetic field plays a significant role as 

arr),0ka(a2H ≤≤−=

H 
has to satisfy the equations 

0H =⋅∇ ,  0H =×∇ . 
Therefore, H  arises out of a potential function and the inclination angle φ  of the 

magnetic field H  with the lower plate is given by 
r)2(a

1
z
φ

r
φ

cotφ
−

=
∂

∂
+
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whose solution is determined from the equations  

r,aφ2cosec2
1c −=   ⎟

⎠
⎞⎜

⎝
⎛ −−−= r2

1ca12cz  

where   is a constant of integration. 1c

The modified Reynolds equation governing the film pressure p turns out to be  ([11, 13]) 
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0

.
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r
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where  3αεα23σ)2σ2αασ +++++++= 3h(23hh233hg(h)
Introducing the non-dimensional quantities 
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and solving the associated Reynolds equation with the concerned boundary conditions 

P(1)=0,  
2
*μ

dR
dP

−=  at R=0 

we get the non-dimensional pressure as 

                                                            ∫+−=
1

R
dR

G(h)
R

6R)(1
2
*μ

P                                                     (1) 

 where  3*α*α2*3σ*ε)2*α2*(σ*α ++++++= h3
2

h3
3

hG(h) . 
The dimensionless load carrying capacity then is given by 

                                                                ∫+=
1

0
dR

G(h)

3R
3

12
*μ

W                                                         (2) 

where the load carrying capacity W is determined by the relation  ∫=
a

0
rp(r)dr2πW

The response time in dimensionless form comes out to be  

                                                          
4πμa

2
0ΔtWh

ΔT = ∫=
2

1

h

h
hd

G(h)
1

W                                              (3)          

where 
0h
1h

1h = , 
0h
2h

2h =  

 
3. THE RESULTS AND DISCUSSIONS 

  
The dimensionless pressure P, load carrying capacity W  and response time  are 

determined by equations (1), (2) and (3) respectively. It is clear that these performance 
characteristics are dependent on various parameters such as 

ΔT

∗μ , , , , B and C. These 
parameters describe respectively the effect of magnetic fluid lubricant, transverse roughness 
and the curvature parameters. 

*σ *ε *α

 The equation (1) shows that the pressure P is increased by ( R1
2
*μ

− )  while the increase 

in load carrying capacity in W  is 12*μ  which is the indication from equation (2). Taking the 
roughness parameters ,  and  to be zero one can get the performance of a 
magnetic fluid based squeeze film trapped between curved circular plates lying along the 
surfaces determined by exponential function and hyperbolic function. In addition, setting the 
magnetization parameter to be zero this investigation reduces essentially to the study of 
squeeze film behavior between the associated curved circular plates. 

*σ *ε *α
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Figure 2: Variation of load carrying capacity with respect to ∗μ  and  *σ
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Figure 3: Variation of load carrying capacity with respect to ∗μ  and  *ε
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Figure 4: Variation of load carrying capacity with respect to ∗μ  and  *α
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Figure 5: Variation of load carrying capacity with respect to ∗μ  and B 

0.55
0.85
1.15
1.45

1.75
2.05
2.35

0 0.2 0.4 0.6 0.8 1

μ∗

Lo
a

d

C=-.2 C=-.1 C=0 C=.1 C=.2
 

Figure 6: Variation of load carrying capacity with respect to ∗μ  and C 
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 The variation of the load carrying capacity W  with respect to the magnetization 
parameter ∗μ  for various values of roughness parameters ,  and and curvature 
parameters B and C respectively is presented in Figures 2-6. These figures suggest that the 
load carrying capacity increases considerably with respect to the magnetization parameter, 
although the effect of  is approximately negligible up to the value 0.1 as indicated in 
Figures A1-A5. It is interesting to note that among the roughness parameters the combined 
effect of magnetization parameter and skewness is more sharp. 

*σ *ε *α
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A1: Load carrying capacity with respect to and *σ ∗μ  
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A2: Load carrying capacity with respect to and *α ∗μ  
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A3: Load carrying capacity with respect to and *ε ∗μ  

 
Figures 7-9 show the effect of the standard deviation associated with roughness on the 

variation of load carrying capacity. It can be easily seen from these figures that the standard 
deviation has a noticeably adverse effect on the performance of the bearing system 
because load carrying capacity decreases considerably. The negative effect of  is 
relatively less with respect to the lower plate curvature parameter C. 

*σ
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A4: Load carrying capacity with respect to B and ∗μ  
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A5: Load carrying capacity with respect to C and ∗μ  
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Figure 7: Variation of load carrying capacity with respect to  and  *σ *ε
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Figure 8: Variation of load carrying capacity with respect to and  *σ *α
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Figure 9: Variation of load carrying capacity with respect to and C *σ
 
 Figures 10-12 depict the effect of variance on the distribution of load carrying capacity. 
These figures make it clear that (+ve) decreases the load carrying capacity while (-ve) 
increases the load carrying capacity. Besides, it is revealed that the combined effect of the 
upper plate curvature parameter and the negative variance is significantly positive. The 
effect of skewness on the variation of load carrying capacity can be seen from Figures 13-14. 
As in the case of variance here also (+ve) decreases the load carrying capacity while 

*α *α

*ε W  
increases with respect to (-ve). Besides, the trends of B are almost opposite to the trends of 
C as can be seen from Figures 15-16. 
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Figure 10: Variation of load carrying capacity with respect to and  *α *ε
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Figure 11: Variation of load carrying capacity with respect to  and B *α
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Figure 12: Variation of load carrying capacity with respect to  and C *α
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Figure 13: Variation of load carrying capacity with respect to  and B *ε
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Figure 14: Variation of load carrying capacity with respect to  and C *ε
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Figure 15: Variation of load carrying capacity with respect to B and C 

103  



 

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL OF 
ENGINEERING. TOME VI (year 2008). Fascicule 2 (ISSN 1584 – 2665)  

 

 

0.30

0.70

1.10

1.50

1.90

2.30

-0.2 -0.1 0 0.1 0.2

C

Lo
a

d

B = -0.2 B = -0.1 B = 0 B = 0.1 B = 0.2

 
Figure 16: Variation of load carrying capacity with respect to C and B 

 
 Furthermore, the combined positive effect of (-ve) and the lower plate curvature 
parameter C is relatively more as compared to the positive effect of (-ve) and the upper 
plate curvature parameter B. Interestingly it is observed that the rate of increase in load 
carrying capacity with respect to the magnetization parameter is little-more with respect to 
the lower plate curvature parameter in comparison with the upper plate curvature 
parameter. Besides, it is noticed that the combined effect of negatively skewed roughness 
and negative variance is considerably positive. Lastly, it can be seen from tables that the 
trends of the response time  are almost identical with that of the load carrying capacity. 

*ε
*ε

ΔT
 

Table 1: Variation of Response time with respect to  and B *ε
 

 

 

 B=-.2 B=-.1 B=0 B=.1 B=.2 
*ε =-.2 0.244588 0.342275 0.491472 0.727823 1.120016 
*ε =-.1 0.237833 0.331034 0.471692 0.690656 1.044464 
*ε =0 0.231353 0.32034 0.453108 0.656403 0.976945 
*ε =.1 0.225135 0.31016 0.435624 0.624754 0.916285 
*ε =.2 0.219165 0.30046 0.419154 0.595441 0.861529 

Table 2:  Variation of Response time with respect to ∗μ and C 
 C=-.2 C=-.1 C=0 C=.1 C=.2 

∗μ =.0001 1.119607 0.521551 0.304562 0.201945 0.145310 
∗μ =.001 1.119644 0.521579 0.304584 0.201963 0.145326 
∗μ =.01 1.120016 0.521851 0.304803 0.202148 0.145487 
∗μ =.1 1.123736 0.524577 0.306991 0.203994 0.147096 
∗μ =1 1.160933 0.551840 0.328867 0.222457 0.163190 

 
Table 3:  Variation of Response time with respect to ∗μ and B 

 B=-.2 B=-.1 B=0 B=.1 B=.2 
∗μ =.0001 0.244357 0.342014 0.491174 0.727477 1.119607 
∗μ =.001 0.244378 0.342038 0.491201 0.727508 1.119644 
∗μ =.01 0.244588 0.342275 0.491472 0.727823 1.120016 
∗μ =.1 0.246689 0.344647 0.494185 0.730971 1.123736 
∗μ =1 0.267690 0.368369 0.521313 0.762452 1.160933 
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4. THE CONCLUSION 

  
 The article indicates that a proper choice of the magnetization parameter and both 
plates curvature parameters may result in a considerably better performance of the bearing 
system in the case of negatively skewed roughness, especially, when negative variance 
occurs. Therefore, the roughness must be accounted for while designing the bearing system. 
  
NOMENCLATURE: 
a = radius of the circular plate 
p = lubricant pressure  
B= curvature parameter of the upper plate 
C= curvature parameter of the lower plate 
H= magnitude of the magnetic field 

P= 
2a0hμ

p3
0h

&
− = dimensionless pressure 

W= load carrying capacity  

W = 
4a0hμ

W3
0h

&
− = dimensionless load carrying capacity 

Δt = response time 

4πμa

2
0ΔtWh

ΔT = = non-dimensional response time 

α = mean of the stochastic film thickness 
σ = standard deviation of the stochastic film thickness  

2σ = variance 
ε = measure of symmetry of the stochastic random variable  

0hσ/σ* =  

0hα/α* =  

3
0hε/ε* =  

r/aR =  
φ = inclination angle 
μ  = absolute viscosity of the lubricant  

μ  = magnetic susceptibility 

0μ = permeability of the free space 

0hμ

3
0khμ0μμ

&

−
=∗ = magnetization parameter  
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