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ABSTRACT: 
The paper presents a non-traditional handling of uncertainties in material, geometric and 
load parameters in linear structural analysis, mainly in static and modal-spectral analysis. 
Uncertainties are introduced as bounded possible values – intervals. The main goal has been 
to propose algorithms for interval computations on FEM models suggested by authors. An 
application of the chosen approaches is going to be presented; the first one is a simple 
combination of only inf-values or only sup-values; the second one presents the full 
combination of all inf-sup values; the third one uses the optimization process as a tool for 
finding out a inf-sup solution and the last one is Monte Carlo technique as a comparison tool. 
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 1. INTRODUCTION 
 
 In the last decade, there has been an increased interest in the modeling and analysis 
of engineering systems under uncertainties. To obtain reliable results for the solutions of 
engineering problems, exact values for the parameters of the model equations should be 
available. In the reality, however, those values often can not be provided, and the models 
usually show a rather high degree of uncertainty. Computational mechanics, for example, 
encounters uncertainties in geometric, material and load parameters as well as in the model 
itself and in the analysis procedure too. For that reason, the responses, such as 
displacements, stresses, resonant frequency, or other dynamic characteristics, will usually 
show some degree of uncertainty [10,11,12]. It means that the obtained result using one 
specific value as the most significant value for an uncertain parameter cannot be considered 
as representative for the whole spectrum of possible results.  
 It is generally known that probabilistic modeling and statistical analysis are well 
established for modeling of mechanical systems with uncertainties. In addition, a number of 
non-probabilistic computational techniques have been proposed, e.g. fuzzy set theory 
[1,9,10,11,13], interval approach [3,4,5,8,16,17], imprecise probabilities [2,9,15,17] etc. The 
growing interest in these approaches originated from a criticism of the credibility of 
probabilistic approach when input dates are insufficient [Zhang]. It is argued that the new 
non-probabilistic treatments could be more appropriate in the modeling of the vagueness.  
 The uncertainty is considered as unknown but bounded with lower and upper bounds. 
The interval numbers derived from the experimental data or expert knowledge can then take 
into account the uncertainties in the model parameters, model inputs etc. By this technique, 
the complete information about the uncertainties in the model may be included and one 
can demonstrate how these uncertainties are processed by the calculation procedure in 
MATLAB. 
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 2. FUNDAMENTAL PRINCIPLES OF INTERVAL ARITHMETIC 
 
 Interval arithmetic was developed by R. E. Moore [4] while studying the propagation 
and control of truncation and rounding off the error, using floating point arithmetic [5] on a 
digital computer. Moore was able to generalize this work into the arithmetic independence 
of machine considerations [17]. 
 In this approach, an uncertain number is represented by an interval of real numbers. 
An interval number [5,6,7] is a closed set R that includes the possible range of an unknown 
real number where R denotes the set of real numbers. Therefore, a real interval is a set of the 
form 

 [ ] { }xxx:xx,x ≤≤∈== Rx , (1) 

where x  and x  are the lower (infimum) and upper (supremum) bounds of the interval 
number x respectively, and the bounds are elements of R with xx ≤ . Definition of real 
intervals and operations with intervals could be found in a number of references [5, 6]. Let’s 
define basic properties of interval number that have been inbuilt in INTLAB [7]: 

• the midpoint of x: ( ) ( )xx
2
1

xmid +==
(

x , 

• the radius of x: ( ) ( )xx
2
1

rad −=x , (2) 

• the absolute value or the magnitude of x: ( ) { }xxx ∈== x~:x~maxmag , 

• the magnitude of x: ( ) { }xx ∈= x~:x~minmig . 

Given [ ]x,x=x  and [ ]y,y=y , the four elementary operations are defined by 

 [ ]yx,yx ++=+ yx , 

 [ ]yx,yx −−=− yx , 

 { } { }[ ]yx,yx,yx,yxmax,yx,yx,yx,yxmin=× yx , (3) 

 yxyx 1×=÷ , 

 [ ] .0xor0xifx1,x11 <>=x  
 For the elementary interval operations, division by an interval containing zero is not 
defined. It is often useful to remove this restriction to give so called extended in erval 
arithmetic [5,6,7]. Extended interval arithmetic leads to the following rules. If 

t
[ ]x,x=x  and 

[ ]y,y=y  with  y0y ≤≤  and yy < , then the rules  
for division are as follows 
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⎪
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⎨

⎧

=≥∞

<<≥∞∪∞−

=≥∞−

<∞∞−

=≤∞−

<<≤∞∪∞−

=≤∞

=

0yand0xif,yx

y0yand0xif,yxyx,

0yand0xifyx,

x0xif,

0yand0xifyx,

y0yand0xif,yxyx,

0yand0xif,yx

yx . (4) 

For further rules for extended interval arithmetic, see [5,6]. 
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 Interval Matrix Analysis and Comparison with Monte Carlo 
 
 Considering uncertain parameters in interval form, we’ll realize comparison study of the 
few basic matrix operations: 
• solution of the linear equations system (INTLAB function - verifylnss)[7], 
• solution of the eigenvalue problem (INTLAB function – verifyeig)[7]. 
 The alternative avenue of the interval arithmetic is to use the Monte Carlo technique. 
With the advent of recent computational facilities, this method becomes attractive. The 
results are determined from the series of numerical analyses (approximately 1000–10000 
iterations). It is recommended to generate the random values with the uniform distribution. 
 
 Example 1 
 Let us consider uncertain linear algebraic system 
 byS =⋅  (5) 
or 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦
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⎣

⎡
⋅
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⎥
⎥
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⎢
⎢

⎣

⎡

2,24    19,8
0

5,16    13,5

55,11   45,10025,5    75,4
05,1      95,045,9   55,815,3     85,2
10,2      90,125,5   75,440,8   60,7

3

2

1

y
y
y

. 

 Thereafter, the interval solution by “verifylnss” procedure versus Monte Carlo simulation 
is presented in Table 1. The comparison has been realized with the usage of midpoint residual 
vector rMidpoint and radius residual vector rResidual expressed in %, e.g. 

 %  100
)y(

)y()y(
r int ⋅

−
=

Intlab

MCIntlab
Midpo mid

midmid  (6) 

and 

 %  100
)y(

)y()y(
r ⋅

−
=

Intlab

MCIntlab
Radius rad

radrad . (7) 

 
Table 1. 

yIntalb 

- solution by interval 
arithmetic (verifylnss) 

yMC 

- solution by Monte 
Carlo simulation 

rMidpoint 

- midpoint residual 
vector in % 

rRadius 

- radius residual 
vector in % 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
7235,1         0,3370
5103,0  1,1409
8782,2         1,3887

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
4579,1        0,6042
6469,0 1,0479
6295,2        1,6799

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

95,5
13,8
99,0

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

7,29
2,8
2,36

 

 
 It should be noted that the difference in radiuses is significant for this fundamental 
mathematic problem. 
 
 Example 2 
 Let’s solve now the “eigenproblem” 
 0v)IS( =⋅⋅λ− ii  (8) 
or 
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. 

Assuming ”verifyeig” solution, we obtain following results, spectral matrix 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
8804,15  13,388500

01563,10  8,21200
001197,5  3,2431

λ  

and modal matrix 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−−
−−−−−−

=
,73580  0,7358,8560           0,8550,72680      0,3790
,23230   0,5984,25240    0,5786,48610      0,2232
3261,0   0,7436,15420    0,4668,7550    0,754

V . 

 Let’s compare interval results with Monte Carlo simulation. Thereafter, by this approach, 
we obtain spectral matrix  

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
,187915  14,076700

07308,9  8,64470
00,69104  3,5963

λMC  

and modal matrix 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−−
−−−−−−

=
,73850  0,7479,85830        0,8557,55910       0,5521
,39810   0,4170,40300  0,4176,36400       0,3459
,52980  0,5312,30560  0,3176,75350  0,7501

V . 

 The comparison of the spectral matrices has been again realized through the use of 
midpoint residual vector and radius residual vector expressed in % (see Table 2). The 
differences in radiuses are also significant and acknowledge the overestimating effect of 
interval arithmetic. 

Table 2. 

Eigenvalue Midpoint residual 
values in % 

Radius residual 
values in % 

λ1 0.9028 41.6658 
λ2 -0.0392 44.1393 
λ3 0.0147 55.4075 

 
 3. PROPOSITION AND APPLICATION OF NUMERICAL METHODS 
 
 During the solving of the particular tasks in the engineering practice using the interval 
arithmetic application on the solution of numerical mathematics and mechanical problems, 
the problem known as the overestimate effect is encountered. Its elimination is possible only 
in the case of meeting the specific assumptions, mainly related to the time efficiency of the 
computing procedures. Now, we will try to analyze some solution approaches already used 
or proposed by the authors. We will consider the following methods: 
• Monte Carlo method (MC) [15, 17], 
• method of a solution evaluation in marginal values of interval parameters – infimum 

and supremum (COM1) [10], 
• method of a solution evaluation for all marginal values of interval parameters – all 

combinations of infimum and supremum (COM2), 
• method of infimum and supremum searching using some optimizing technique 

application (OPT) [9], 
• direct application of the interval arithmetic using INTLAB – MATLAB’s toolbox (INTL), [7]. 
 Monte Carlo method (MC) is a time consuming but reliable solution tool. Various 
combinations of the uncertain parameter deterministic values are generated (Figure 1) and 
after the subsequent solution in the deterministic sense we obtain a complete set of results 
processed in an appropriate manner. Infimum and supremum calculation is following 
  1000005000m  and  ,...m1i where  ,)F(p results all ofmin(F) inf i ÷≈== , 
and  

1000005000m  and  ,...m1i where  ,)F(p results all ofmax(F) sup i ÷≈== . 
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p1a1

p2

a2

b1

b2

 

 

 Second method application (COM1), i.e. solution 
evaluation in marginal values of interval parameters has 
its physical meaning for many engineering problems. We 
consider an approach where the extreme output values 
are obtained by the application of the extreme 
parameter values on input. That means that the final 
solution infimum is obtained using the deterministic 
analysis for infimum of uncertain input parameters and in 
the opposite way, the final supremum will be obtained 
using the deterministic analysis for supremum of  the input 
uncertain parameters (see Figure 2). Inf-sup calculation is 

] ,[ ofmin inf )pF()pF((F) =  and      

] ,[ ofmax sup )pF()pF((F) = .                            (9) 
Figure 1. MC generation of the 

realizations map  
for two interval parameters 

p1a1

p2

a2

b1

b2

 

 

    The third approach COM2 which is also based on the 
set of the deterministic analyses appears as the more 
suitable one. The marginal interval parameter values are 
considered again but the infimums and supremums are 
also combined (Figure 3). The method provides satisfying 
results and can be marked as reliable, even if there is still 
a doubt about the existence of the extreme solution for 
the uncertain parameter inner values. Solution for two 
interval numbers 111 bap =  and 222 bap =  may be 
found by this computational way 

( ) ( ) ( ) ( ) ].,  ,,[ ofmin inf 21212121 bbFabFbaFaaF(F)=             (10) Figure 2. COM1 - realizations map 
 for 2 interval parameters ( ) ( ) ( ) ( ) ].,  ,,[ ofmax sup 21212121 bbFabFbaFaaF(F)=                  (11) 

 The method of the infimum and supremum solution 
searching using the optimization techniques (OPT, Figure 
4) is proposed by the authors as an alternative to the first 
and to the third method. It should eliminate a big 
amount of analyses in the first method and also 
eliminates the problem with the possibility of the infimum 
and supremum existence inside of the interval 
parameters for the deterministic values. Computational 
process for two interval numbers 111 bap =  and 

222 bap =  may be found as follows p1a1

p2

a2

b1

b2

 

 
Figure 3. COM2 - realizations map 

for two interval parameters 
min. )p(  that so  p  find  i.e.  )p( inf →= OPTOPTOPT FF(F)       (12) 
max. )p(  that so  p  find  i.e.  )p( sup →= OPTOPTOPT FF(F)       (13) 

 The authors used also the interval arithmetic 
principles implemented in INTLAB as another computing 
tool. However, the overestimate effect mentioned 
above for the significant uncertainties causes 
considerable problems and the possibilities of INTLAB 
using are therefore very restricted. INTLAB using makes 
sense particularly for simple problems because of the 
results obtaining speed. 

p1a 1

p2

a2

b1

b 2

 

 
Figure 4. OPT- realizations map for 

two interval parameters 

 
  
 
 
 
 

  
153

 
 



 

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL OF 
ENGINEERING. TOME VI (year 2008). Fascicule 2 (ISSN 1584 – 2665)  

 

Example 3 
 Let’s apply the presented numerical methods into the solution of the following system 

 . ⎥
⎦

⎤
⎢
⎣

⎡ ><
=⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
>−<−

><
0
2,0

2,12
11,0

2

1
y
y

 The solution is shown on Figure 5 and the comparison of the used methods is 
summarized in Table 3. 

Table 3. Results obtained by the proposed numerical methods 

 exact 
solution 

1st method 
MC 

2nd method 
COM1 

3rd method 
COM2 

4th method 
OPT 

5th method 
INTLAB 

Y1 <-2  2> <-1,95  1,94> <-1  1> <-2  2> <-2  0> <-4,78  4,78> 
Y2 <0  4> <0  3,91> <0  2> <0  4> <0  4> <-5,1  5,1> 

 
 In general, solving of the interval 
equations system may be a complicated 
problem (mainly for large dimension, [5]). 
Good information about the solution set is 
obtained using Monte Carlo method. The 
other methods determine only the marginal 
values with bigger or smaller inaccuracies. The 
1st and the 3rd used methods are particularly 
suitable for the equations systems solving 
according to the experiences of the authors. 
In case of the fourth method application (the 
optimization method) there is a problem with 
a formulation of the appropriate test function 
which would properly describe searching of 
multiple inf or sup solutions. INTLAB usage 
appears to be unsuitable because the 
parameter uncertainty is rather strong. 

Figure 5. Map of the interval linear  
equations system solution 

 Example 4 
 Let’s compare the proposed interval computational methods during solving of the 
following eigenvalues problem 
a) with a small signification of the parameters uncertainty, e.g. 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅
⎟
⎟

⎠

⎞

⎜
⎜
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⎥
⎦
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⎢
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⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

0
0

1,18  180
01,20  20

9450  94009450  9400
9450  940019500  19400

2

1

i
i v

v
 

b) and with a larger signification of the parameters uncertainty, e.g. 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅
⎟
⎟
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Inf-sup results has been compiled into Table 4. Graphic representation of the results is shown 
on Figure 6. 

Table 4. Results obtained by the proposed numerical methods 
 1st method 2nd method 3rd method 4th method 5th method 
λ1 <201 203> <202,3 202,5> <201  203> <201 203> <199 206> A 
λ2 <1284 1296> <1289 1290> <1283 1296> <1283 1296> <1268 1312> 
λ1 <167 220> <181 202> <164  223> <164 223> <95 287> B 
λ2 <1059 1415> <1147 1290> <1039 1425> <1038 1425> <600 1827> 

 
Solving of the eigenvalues problem as a frequent task of the solid mechanics has 

demonstrated the facilities of the particular approaches. Monte Carlo method gives usually 
good information about the solution set. The other methods determine only the marginal 
values. For the eigenvalues analysis of the systems with the interval parameters the authors 
recommend according to their experiences to use particularly the 1st, 3rd and 4th method. All 
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of them give satisfying results but especially the 3rd and 4th ones appear to be the most 
suitable. 
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Figure 6. Solution of the set eigenvalues with 
the small uncertainties 

data1 – Monte Carlo analysis 
data2 – COM1, evaluation in marginal values 

(only inf or only sup) 
data3 – COM2, evaluation for all marginal 

values–all combinations 
data4 – OPT, inf and sup searching using 

optimizing technique application 
data5 – direct application of the interval 

arithmetic using INTLAB 
------  – boundary of the all possible 

solutions set 

 From the efficiency perspective, the third method can be considered as the best even 
if there exists a risk of loosing the inner interval number solutions. Usage of the second and the 
fifth method (INTLAB) is determined by the uncertainty importance (the interval size). As it is 
presented, all methods are acceptable in the case of a minor uncertainty (solution A). 
 
 4. INTERVAL FINITE ELEMENTS ANALYSIS (IFEA) 
 
 The finite element method (FEM) [1, 2, 8, 10,15] is a very popular tool for a complicated 
structural analysis. The ability to predict the behavior of a structure under static or dynamic 
loads is not only of a great scientific value, it is also very useful from an economical point of 
view. A reliable FE analysis could reduce the need for prototype production and therefore 
significantly reduce the associated design validation cost.  
 It is sometimes very difficult to define a reliable FE model for realistic mechanical 
structures when a number of its physical properties is uncertain. Particularly, in the case of FE 
analysis, the mechanical properties of the used materials are very hard to predict, and 
therefore an important source of uncertainty. Reliable validation can only be based on an 
analysis which takes into account all uncertainties that could cause this variability. It is the aim 
of this part to incorporate the most important uncertainties in FE analysis. 
 According to the character of the uncertainty, we can define a structural uncertainty 
(geometrical and material parameters) and uncertainty in load (external forces, etc.). The 
structural uncertainty parameters are usually written into matrix ][ x,xx =  and the interval 
static (time independent) FE analysis may be formulated as follows 
   or  )()( xfuxK =⋅ ][][][ f,fu,uK,K =⋅  (14) 

where K,K  are the infimum and supremum matrices of the stiffness matrix K, u,u  are the 

infimum and supremum vectors of the displacements vector u, ][ f,f  are the infimum and 
supremum vectors of the loading vector f. Considering a dynamic conservative system, it is 
possible to obtain the interval modal and spectral matrices using the solution of 
 0vxMxK =⋅⋅λ− jj )]()([     or    0v,vM,MK,K =⋅⋅λλ ][])[],[-][( jjjj , (15) 

where jj ,λλ  and jj v,v  are the j-th eigenvalue with corresponding eigenvector, 

MMKK ,,,  are of course the infimum and supremum of the mass and stiffness matrices. The 
application of the classic interval arithmetic for FE analysis is very limited. Its “overestimation” 
grows with the problem size (the dimension of the system matrices) and has not a physical 
foundation in the reality. Therefore, it is efficient to apply the previous numerical methods. 
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Application of the Monte Carlo method in IFEA may be realized as follows: 
Static analysis 
1. step: generation of the random matrix (uniform distribution) 
 100000)5000(m     ],,.....[ m1MC ÷≈= xxX , 
2. step: solution of 
 , )]()(),...,()([ m

1
m1

1
1MC xfxKxfxKU ⋅⋅= −−

3. step: 
 - infimum calculation  uU →= ) of row iinf(u MC

th
i , 

 - supremum calculation  uU →= ) of row isup(u MC
th

i . 
Eigenvalues analysis 
1. step: generation of the random matrix (uniform distribution) 
 100000)5000(m     ],,.....[ m1MC ÷≈= xxX , 
2. step: solution of 
  ...m1jfor    )]()([ jjMC_jjMC_j ==⋅⋅−→ 0VxMλxKλ , 
3. step: 
 - infimum calculation of the i-th eigenvalue  ) of row iinf( MC

th
i λ=λ , 

 - supremum calculation of the i-th eigenvalue ) of row isup( MC
th

i λ=λ . 
 In the case of COM1, the numerical approach implementation to IFEA is following: 
Static analysis 
- infimum calculation  )()( 1 xfxKu ⋅= − , 

- supremum calculation  )()( 1 xfxKu ⋅= − . 
Eigenvalues analysis 
- infimum calculation    )]()([ 0VxMλxKλ =⋅⋅−→ , 

- supremum calculation   )]()([ 0VxMλxKλ =⋅⋅−→ . 
 COM1 doesn’t give the correct results every time. We can obtain more proper results 
using COM2. Its computational process for IFEA is: 
Static analysis 
1. step: calculation of realizations matrix X2, i.e. 2n inf-sup combinations, 
     (n – number of uncertain system parameters), 
 , )2(m     ],,.....[ n

m12COM == xxX
2. step: solution of 
               , )]()(),...,()([ m

1
m1

1
12COM xfxKxfxKU ⋅⋅= −−

3. step: 
- infimum calculation  uU →= ) of row iinf(u MC

th
i , 

- supremum calculation  uU →= ) of row isup(u MC
th

i . 
Eigenvalues analysis 
1. step: calculation of realizations matrix X2, i.e. 2n inf-sup combinations, 
     (n – number of uncertain system parameters), 
 , )2(m     ],,.....[ n

m12COM == xxX
2. step: solution of 
  ...m1jfor    )]()([ jj2COM_jj2COM_j ==⋅⋅−→ 0VxMλxKλ , 
3. step: 
- infimum calculation of the i-th eigenvalue ) of row iinf( 2COM

th
i λ=λ , 

- supremum calculation of the i-th eigenvalue ) of row isup( 2COM
th

i λ=λ . 
 Generally, the infimum or supremum are not found only in the boundary points (COM1, 
COM2) but also in the inner domain of the solution set (OPT). To find the inf-sup solution using 
the approach OPT means to solve the optimizing problem described as follows: 
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Static analysis 
- infimum calculation 
 )])()([ ofmember  i of value minimize)(u 1th

OPTi xfxKx ⋅→ − , 
- supremum calculation 
 )])()([ ofmember  i of value maximize)(u 1th

OPTi xfxKx ⋅→ − . 
Eigenvalues analysis 
- infimum calculation of the i-th eigenvalue 
 0vxMλxKx =⋅⋅−λ→λ iiiOPTi )]()([  : eq.for   of value minimize)( , 
- supremum calculation of the i-th eigenvalue 
 0vxMλxKx =⋅⋅−λ→λ iiiOPTi )]()([  : eq.for   of value maximize)( . 
It should be noted that it is possible to realize the searching process by a comparison 
optimizing method (e.g. Nelder-Mead simplex algorithm) or by using genetic algorithm as a 
robust tool of global optimization.      
 

5. SOLVING OF TRUSS STRUCTURES WITH INTERVAL PARAMETERS 
 
 For the following research purposes on the interval finite element model computing, the 
truss structure shown on the Figure 7 was analyzed; this figure presents also the geometry of 
the structure. The truss structure was loaded by uncertain forces F1 and F2. The certain model 
parameters are defined as follows: 
• element mass density , 3mkg2700 −⋅=ρ

• damping coefficient , 5103,1 −⋅=δ
• nodal concentrated mass kg50m = , 
         (mass point in nodes 33, 34, 35, 36). 

Stress interval analysis of the truss structure 
Let’s assume the following uncertain model parameters: 

• Young‘s modulus  Pa10205,195,0 11⋅⋅=E , 

• cross section areas  2
1 mm56905,195,0 ⋅=A , 

  2
2 mm69105,195,0 ⋅=A , 

  2
3 mm155005,195,0 ⋅=A , 

• loading forces F1 and F2 N
00050
00035

1,19,0
⎭
⎬
⎫

⎩
⎨
⎧
⋅=F . 

 The uncertain input parameters in the vector form are defined for the further analyses 
as follows: .  [ ]21321 ,,,,,x FFAAAE=

The purpose of this study is to compare the efficiency and exactness of the proposed 
methods MC, COM1, COM2 and OPT. The results of the MC analysis are considered as the 
reference values and are used for the construction of the solution map. In the case of MC 
method, 5000 random inputs have been generated; they have been evaluated and properly 
processed to inf-sup solutions. 
 The maximal stress values calculated by the particular methods for the truss loaded by 
maximal stress (truss No. 15) achieved the following values: 

 

(COM2)265334
(OPT)254343
(COM1)281310
(MC)255343

max 15

−−
−−
−−
−−

=σ=σi  

The results are obtained from the final arrangement of the solution set applying the 
searching algorithm for the infimum and supremum as follows: 

( )( )xmaxmininf σ= ,   ( )( )xmaxmaxsup σ= . 
 

  
157

 
 



 

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL OF 
ENGINEERING. TOME VI (year 2008). Fascicule 2 (ISSN 1584 – 2665)  

 

 If the COM1, COM2 and OPT methods are 
compared with the MC method, it can be 
observed that: 
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• the COM1 method is the less appropriate 
and is not recommended for this kind of 
analyses, 

• the OPT method provides comparable, in 
some cases even better results than the 
MC method and what is very important 
that it does not need so many analyses 
steps as the MC method, 

• the disadvantage of MC and OPT 
methods is a problem with finding the 
solution in the solution map corners, 

Figure 7. Analyzed truss structure 

• the COM2 method does not necessarily 
have to give exact results, but from the 
perspective of the number of performed 
analyses, it is more efficient than the MC 
or OPT methods and it can “find” the 
solutions in the solution map corners, 

• the previous considerations lead to the 
recommendation to combine COM2 and 
MC or OPT methods. 

 
 

Table 5. Errors in midpoints of the stress in critical element No. 15 
MC COM1 OPT COM2 

Stress Reference 
midpoint Midpoint Error [%] Midpoint Error [%] Midpoint Error [%] 

σ15 [MPa] -299 -299,5 0,17 -299,5 0,17 -298,5 0,17 
 

Table 6. Errors in radiuses of the stress in critical element No. 15 
MC COM1 OPT COM2 

Stress Reference 
radius Radius Error 

[%] Radius Error [%] Radius Error [%] 

σ15 [MPa] 44 14,5 67 34,5 21,6 44,5 1,1 
Application 

possibility good bad limited good 

 
Modal and spectral interval analysis of the truss structure 
 
The interval modal and spectral analysis of the identical truss structure (Figure 7) is 

realized assuming the following uncertain model parameters: 
• Young‘s modulus Pa10205,195,0 11⋅⋅=E , 

• cross section areas 2
1 mm56905,195,0 ⋅=A , 

  2
2 mm69105,195,0 ⋅=A , 

  2
3 mm155005,195,0 ⋅=A . 

 The uncertain input parameters in the vector form are defined for the further analyses 
as follows: .  [ ]321 ,,,x AAAE=
 The solution will now consider only the analyses of the first two interval natural 
frequencies f1 and f2. In the case of MC method, 5000 random inputs have been generated, 
evaluated and properly processed to inf-sup solutions. 
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  The interval solution results are summarized in the Table 7 and the graphical 
representation of the solving map with the infimum and supremum implementation obtained 
by using the suggested methods is shown on the Figure 8. 

Table 7. Results of the natural frequencies 
Freq. no. MC COM1 OPT COM2 

1f  [Hz] <750  848> <781  821> <748  856> <766  834> 

2f  [Hz] <770  862> <797  836> <769  867> <784  851> 

Table 8. Errors in midpoints of the natural frequencies 
MC COM1 OPT COM2 

Freq. 
no. Reference 

midpoint Midpoint Error [%] Midpoint Error [%] Midpoint Error [%] 

1f  [Hz] 799 801 0,25 802 0,375 800 0,125 
2f  [Hz] 816 816,5 0,06 818 0,245 817,5 0,184 

Table 9. Errors in radiuses of the natural frequencies 
MC COM1 OPT COM2 Freq. 

no. Reference 
radius Radius Error [%] Radius Error [%] Radius Error 

[%] 
1f  [Hz] 49 20 59,18 54 10,20 34 30,61 
2f  [Hz] 46 19,5 57,61 49 6,52 33,5 27,17 

Application 
possibility good bad good limited 

 
 On the basis of the experiences obtained from the interval estimations of the FEM 
models spectral properties it is possible to conclude: 
• the appropriateness of OPT algorithm application, which mainly due to the simplicity of 

the criteria function for the infimum or supremum analysis gives excellent results, in some 
cases even better than MC method, 

• the previous fact relates to the application of the genetic searching algorithms, of 
which the biggest advantage is their universality and particularly searching for global 
extremes, 

• the inappropriateness of the COM1 method is demonstrated again because it shows 
a considerable deflection against the other methods, 

• the COM2 method has a limited use but it can be suitable in combination with the OPT 
method because of “locating” of the solution map corner solutions. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 8. The frequencies solving map with the inf-sup implementation 
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 6. CONCLUSION 
 
The paper discusses the possibility of the interval arithmetic application in a structural 

analysis. The use of the interval arithmetic provides a new possibility of the quality and 
reliability appraisal of analyzed objects. Due to this numerical approach, we can analyze 
mechanical, technological, service and economic properties of the investigated structures 
more authentically. 
 Interval finite element method is a useful tool for engineering problems with uncertain – 
inexact parameters. In the paper we have investigated possibilities of the stress-strain and 
modal-spectral solution of a truss structure with an interval loading, interval geometry (interval 
cross section areas of the truss structure) and also interval material properties. We have 
analyzed the interval stress response and interval natural frequency of the testing FE model. 
The centre of our interest has been mainly the comparison of the suggested numerical 
algorithms and their efficiency evaluation.     
 
This work has been supported by VEGA grants No. 1/3168/06 and 1/4099/07. 
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