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ABSTRACT  
In this paper we will show how one can apply known probability bounding techniques for 
bounding the actuarial present value of group life insurance. We will regard the probability 
bounding techniques by aggregation and disaggregation in linear programs published by 
Prékopa and Gao (see [2]).  
There will be shown in the paper that these probability bounding techniques can be applied 
in the framework of the actuarial present value of group life insurance. Numerical test results 
will also be presented. 
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1. INTRODUCTION  
 
In an earlier paper Prékopa and Horváth (see [3]) applied the so called binomial 

moment lower and upper bounds for constructing bounds on the actuarial present value of 
group life insurance. The binomial moment probability bounds can be obtained by the 
solution of linear programs according to the binomial moments. These linear programs may 
be called aggregated programs as they utilize some lower order product event probabilities 
in aggregated form, namely the given order product probabilities are summed up 
(aggregated) in the binomial moment values. Recently Prékopa and Gao (see [2]) pointed 
out that the individual product event probabilities can be utilized in the linear programs 
without aggregation, too. The linear programs formulated this way may be called 
disaggregated linear programs and it is easy to prove that their optimal solutions provide 
better bounds on the probability of union of events. In this paper we will show that by the 
application these better probability bounds one can get better bounds on the actuarial 
present value of group life insurance, too. In the second section of the paper we briefly 
describe the concept of the actuarial present value of group life insurance and show how 
the probability bounds can be applied for bounding their value, in general. In the third 
section the probability bounding techniques by aggregation and disaggregation in linear 
programs will be described as it was worked out by Prékopa and Gao (see [2]). In the fourth 
section some numerical test results will be given, proving the superiority of the applied new 
probability bounding techniques. 

 
2. THE ACTUARIAL PRESENT VALUE OF GROUP LIFE INSURANCE  
 
In this section we will use the concepts and terminologies introduced by Bowers in his 

book (see [1]). The life time of a person is random variable, let it be designated by X. If the 
person lived x years then his remaining life time will be designated by T(x), which is also a 
random variable. The probability distribution of T(x) can be expressed by the conditional 
probability distribution of X. Indeed, if we denote by F(x) the probability distribution function of 
X: 
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( ) ( ) 0, ≥≤= xxXPxF                                    (2.1) 
and introduce the notation: 

     ( ) ( ),1 XFxs −=                                    (2.2) 
then the probability distribution function of T(x) can be given in the following way: 
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Let us regard n persons in their ages  years, where the numbers  are 
not necessarily integers. As the time is going on, the number of survivors will decrease. Let be 
designated by 
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if the number of survivors out of n persons with ages  is at least k and by nxx ,,1 K
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if the number of survivors out of n persons with ages  is exactly k. nxx ,,1 K

Then the probability that after t years from present at least k survivors exist will be 
designated as 

nxxx
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and similarly the probability that after t years from present exactly k survivors exist will be 
designated as 
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It is well known in the probability theory that for any  and  numbers  nccc ,,, 10 K nddd ,,, 10 K
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is the kth difference of the series .  nccc ,,, 10 K

Some types of actuarial present values can be calculated as the numerical integral 
over the time horizon of the left hand sides in the formulae (2.4) and (2.5). We can do the 
same with the right hand sides of the formulae (2.4) and (2.5), however the main numerical 
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problem will be the calculation of the probability values involved in the expression of   in 

formula (2.6). If the random variables 
kt S

( ) ( )nxTxT ,,1 K  are independent, then  

( ) ( )( ) ( )( ) ( )( )txTPtxTPtxTtxTP
kk iiii >>=>> LK

11
,,  

and we need the ( ) ( )( )txTtxTP
kii >> ,,

1
K  probability values only for  However they 

are dependent random variables, we may be able to calculate these probabilities for 
relatively small values of k, and then we will be able to utilize the probability bounding 
techniques given in the next section.  

.1=k

 
3. PROBABILITY BOUNDING TECHNIQUES BY AGGREGATION AND DISAGGREGATION IN 

LINEAR PROGRAMS 
 
In this section we will follow the train of thought applied in the paper by Prékopa and 

Gao ([2]). Let us regard the classical inclusion-exclusion formula giving the probability of the 
union of events  in terms of the intersection probabilities of the same events: nAA ,,1 K
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If we know all  values, then the probability of the union of events 

 is determined by the above inclusion-exclusion formula. If, however, we only know 
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bounds on the probability of the union. Let 10 =S  by definition and designate ν  the number 

of those events (among ) which occur, then we have the relations nAA ,,1 K
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where ( ) .,,1,0, niiPvi K=== ν  As we have trivially the equality  

 to obtain lower and upper bounds on the probability of the union we can 
formulate two linear programs: 
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Problem (3.1) use the probabilities ( )
kk iiii AAPp ILIK 11

=  in aggregated form, i.e.,  

  are used rather than the probabilities in these sums. This is why we call (3.1) 
aggregated problems. 
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as follows. Define 
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Now we can formulate the following two linear programs, called disaggregated 
programs: 
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We remark that Prékopa and Gao ([2]) defined a third type of LP by the use of partial 
aggregation/disaggregation of the LPs (3.1) and (3.2) and presented new bounds for the 
union of events based on the new type LP. In our case we will be able to solve the fully 
disaggregated LP problem (3.2), so we will not apply partially aggregated/disaggregated 
LPs. 
 

4. NUMERICAL TEST RESULTS 
 
In our test example we took a group of four persons (father, mother son and daughter 

with given ages) and took their surviving probabilities from real statistical data. The joint 
surviving probabilities were constructed such a way that the correlation be as large as 
possible and in another example opposite way as small as possible. The sequence of real 

numbers were .1,
2
1,

4
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8
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In this case the aggregated LP was: 
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and the disaggregated LP was: 

 
The numerical results for the actuarial present values are given in the following tables 

and figures (maximal correlation case, minimal correlation case and independent case):  
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Aggregated LP problems 

T max. corr. max. corr. min. corr. min. corr. independent 
 lower bound upper bound lower bound upper bound exact value 

1 0.992537 0.992890 0.991832 0.991832 0.991843 
2 0.984628 0.985364 0.983158 0.983158 0.983203 
3 0.976285 0.977436 0.973983 0.973983 0.974093 
4 0.973298 0.974900 0.970094 0.970094 0.970265 
5 0.964065 0.966155 0.959883 0.959883 0.960185 
6 0.954351 0.956972 0.949107 0.949107 0.949588 
7 0.944135 0.947332 0.937739 0.937739 0.938459 
8 0.933419 0.937241 0.925774 0.925774 0.926800 
9 0.922194 0.926688 0.913207 0.913207 0.914617 

10 0.910436 0.915645 0.900019 0.900019 0.901902 
11 0.898113 0.904081 0.886176 0.886176 0.888632 
12 0.885224 0.891996 0.871681 0.871681 0.874819 
13 0.871779 0.879396 0.856544 0.856544 0.860486 
14 0.857769 0.866286 0.840734 0.840734 0.845617 
15 0.843183 0.852673 0.824202 0.824202 0.830185 
16 0.827994 0.838560 0.806863 0.806863 0.814139 
17 0.812235 0.824012 0.788680 0.788680 0.797480 
18 0.795938 0.809089 0.769634 0.769634 0.780230 
19 0.779090 0.793799 0.749672 0.749672 0.762379 
20 0.761631 0.778096 0.728703 0.728703 0.743886 
21 0.743470 0.761898 0.706616 0.706616 0.724697 
22 0.724534 0.745137 0.683328 0.683328 0.704785 
23 0.704814 0.727816 0.658810 0.658810 0.684180 
24 0.684348 0.709984 0.633074 0.633074 0.662956 
25 0.663212 0.691736 0.606164 0.606164 0.641220 
26 0.641511 0.673186 0.578162 0.578162 0.619114 
27 0.619275 0.654373 0.549078 0.549078 0.596712 
28 0.597015 0.635808 0.519429 0.519429 0.574509 
29 0.574678 0.617250 n.a. n.a. 0.552488 
30 0.552198 0.597356 n.a. n.a. 0.530629 
31 0.529504 0.577319 n.a. n.a. 0.508911 
32 0.506569 0.557115 n.a. n.a. 0.487358 
33 0.483408 0.536757 n.a. n.a. 0.466031 
34 0.460050 0.516270 n.a. n.a. 0.444997 
35 0.436533 0.495692 n.a. n.a. 0.424319 
36 0.415456 0.475067 n.a. n.a. 0.404047 
37 0.397229 0.454165 n.a. n.a. 0.383997 
38 0.379196 0.433706 n.a. n.a. 0.364755 
39 0.361415 0.413778 n.a. n.a. 0.346350 
40 0.343924 0.394446 n.a. n.a. 0.328780 
41 0.326758 0.375770 n.a. n.a. 0.312026 
42 0.309930 0.357784 n.a. n.a. 0.296046 
43 0.293450 0.340507 n.a. n.a. 0.280780 
44 0.277305 0.323925 n.a. n.a. 0.266156 
45 0.261474 0.308001 n.a. n.a. 0.252098 
46 0.245941 0.292698 n.a. n.a. 0.238542 
47 0.230713 0.278001 n.a. n.a. 0.225450 
48 0.215834 0.263942 n.a. n.a. 0.212825 
49 0.201377 0.250585 n.a. n.a. 0.200694 
50 0.187451 0.238046 n.a. n.a. 0.189115 
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Disaggregated LP problems 

T max. corr. max. corr. min. corr. min. corr. 
 lower bound upper bound lower bound upper bound 

1 0.992708 0.992708 0.991832 0.991832 
2 0.984993 0.984993 0.983158 0.983158 
3 0.976864 0.976864 0.973983 0.973983 
4 0.974115 0.974115 0.970094 0.970094 
5 0.965142 0.965142 0.959883 0.959883 
6 0.955711 0.955711 0.949107 0.949107 
7 0.945804 0.945804 0.937739 0.937739 
8 0.935424 0.935424 0.925774 0.925774 
9 0.924565 0.924565 0.913207 0.913207 

10 0.913204 0.913204 0.900019 0.900019 
11 0.901309 0.901309 0.886176 0.886176 
12 0.888872 0.888872 0.871681 0.871681 
13 0.875899 0.875899 0.856544 0.856544 
14 0.862378 0.862378 0.840734 0.840734 
15 0.848301 0.848301 0.824202 0.824202 
16 0.833652 0.833652 0.806863 0.806863 
17 0.818467 0.818467 0.788680 0.788680 
18 0.802787 0.802787 0.769634 0.769634 
19 0.786600 0.786600 0.749672 0.749672 
20 0.769850 0.769850 0.728703 0.728703 
21 0.752452 0.752452 0.706616 0.706616 
22 0.734332 0.734332 0.683328 0.683328 
23 0.715486 0.715486 0.658810 0.658810 
24 0.695952 0.695952 0.633074 0.633074 
25 0.675813 0.675813 0.606164 0.606164 
26 0.655180 0.655180 0.578162 0.578162 
27 0.634084 0.634084 0.549078 0.549078 
28 0.613037 0.613037 0.519429 0.519429 
29 0.591992 0.591992 n.a. n.a. 
30 0.570897 0.570897 n.a. n.a. 
31 0.549698 0.549698 n.a. n.a. 
32 0.528379 0.528379 n.a. n.a. 
33 0.506964 0.506964 n.a. n.a. 
34 0.485490 0.485490 n.a. n.a. 
35 0.464009 0.464009 n.a. n.a. 
36 0.442576 0.442576 n.a. n.a. 
37 0.421013 0.421013 n.a. n.a. 
38 0.399953 0.399953 n.a. n.a. 
39 0.379490 0.379490 n.a. n.a. 
40 0.359698 0.359698 n.a. n.a. 
41 0.340639 0.340639 n.a. n.a. 
42 0.322337 0.322337 n.a. n.a. 
43 0.304793 0.304793 n.a. n.a. 
44 0.287969 0.287969 n.a. n.a. 
45 0.271798 0.271798 n.a. n.a. 
46 0.256202 0.256202 n.a. n.a. 
47 0.241113 0.241113 n.a. n.a. 
48 0.226503 0.226503 n.a. n.a. 
49 0.212385 0.212385 n.a. n.a. 
50 0.198832 0.198832 n.a. n.a. 
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Maximal pairwise correlation,
aggregated-disaggregated model
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Independent case
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