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ABSTRACT:  This paper presents a numerical investigation upon the temporal stability of a Q 
type vortex subject to infinitesimal perturbations. The study is based on spectral collocation 
technique using Chebyshev Gauss-Lobatto points and the eigenvalue problem is obtained in 
a matrix form and is solved by an Arnoldi type algorithm. Our procedure directly provides 
relevant information about the state of the fluid system for given parameters, in axi-
symmetrical and non-axi-symmetrical mode and also permits a graphical visualization of the 
perturbed velocity fields. 
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1. INTRODUCTION 
 
We present in this paper a numerical investigation upon temporal stability of a trailing Q 

type vortex, subject to infinitesimal perturbations. Such problems may be of interest in the field 
of aerodynamics, where vortices trail on the tip of each wing of the airplane and a stability 
analysis is needed.  

Using a spectral Chebyshev Gauss-Lobatto collocation technique, we developed a 
numerical procedure which directly provides relevant graphic information about 
perturbation velocities amplitude for stable or unstable induced modes.  

Our paper is organized in the following manner. We set the problem and the 
perturbations form in Section 2. Section 3 describes in detail the numerical procedure based 
on collocation technique and relates the results and Section 4 concludes the paper. 

 
2. VISCOUS ANALYSIS MODEL FOR TEMPORAL STABILITY 
 
In literature, the properties of swirl flows are presented in a beautiful synthesis in [1] and, 

later, a study against instability for a trailing vortices class was made in [2].  
We consider for our purpose the one-parametric model of the Q-vortex, in form related 

in [1] 

( ) ( ) ( ) 0rW,e1
r
QrV,0rU

2r =⎟
⎠
⎞⎜

⎝
⎛ −== −                                           (1) 

where U, V, W are the radial, tangential and axial velocity components, respectively, and Q is 
the swirl parameter.  

As the axial velocity is null, we consider the flow in a base plane, and we perform a 
stability analysis at the base of the Q-swirl structure. The flow is assumed to be incompressible 
and the lengths in cylindrical coordinates are non-dimensionalised.  

We first obtain the liberalized Navier-Stokes equations, in cylindrical polar coordinates, 
subject to the base flow of form (1). We perform a linear stability investigation of the 
proposed base flow, in which the velocity and pressure p fields are decomposed into their 
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)mean parts (  and small perturbations P,W,V,U ( )'p,'w,'v,'u . We use in this note the standard 
form of the perturbations, in detail described in [1] 

( ) ( ) ( )                                         (2) tnziTT e)r(p),r(w),r(v),r(u'p,'w,'v,'u ω−θ+α=

where u , v , w  and p  are the disturbances eigenfunctions, α  is the axial wavenumber,  is 
the integer azimuthal wavenumber, 

n
θ  is the azimuthal angle and ω  is the complex temporal 

frequency. We obtained the hydrodynamic temporal stability model of the following form 

( ) ( )rsrs Η−≡Μω     ,   ( ) ( )T)r(p),r(w),r(v),r(urs =                                     (3a) 
Relation (3a) consists in a set of partial differential equations for the perturbation 

velocities and pressure, expressed in a matriceal form. The non-zero elements of the 4 × 4 
matrix operators M and H are given by 

immm 332211 −===  
and 
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α−−

∂
∂

+
∂

∂
≡Δ and prime denote dr/dV'V ≡ . The Reynolds number Re is 

defined according to the maximum difference of axial velocity and the vortex core radius, as 
described in [2]. The system (3a) has to be solved in this note subject to the following 
boundary conditions [7] 

0=r  
0nCase =      0vu == ,  0dr/wd = ,                                               (3b) 

1nCase >       0wvu === ;                                                     (3c) 

   ∞→r     0wvu === .                                            (3d) 
In the temporal stability analysis that we will study here, for a given real wavenumber α 

and given the parameters Re, Q and n, the system (3a-3d) constitutes a linear eigenvalue 
problem for the complex eigenvalue ω. The flow is considered unstable when the disturbance 
grows in time, i.e. the imaginary part of the eigenfrequency ω is positive. 
 

3. SPECTRAL COLLOCATION BASED INVESTIGATION 
 
3.1. Chebyshev spectral differentiation matrices 
Spectral methods are one of the most used technique for the numerical investigations in 

hydrodynamic stability problems. Many researchers have demonstrated the applicability of 
this technique with high degree of accuracy, as in [4], [5], [6]. 

We choose for our study a Chebyshev Gauss-Lobatto collocation approach, for the 
reasons that Chebyshev polynomials distribute the error evenly, exhibit rapid convergence 
rates with increasing numbers of terms and cluster the collocation points near the boundaries, 
diminishing the negative effects of the Runge phenomena [8, 10]. 

The Chebyshev Gauss-Lobatto points are given explicitly by 
( ) N..0j,N/jcosj =π=ξ                                        (4) 

In order to compute the derivatives ( ) rrs ∂∂ /   and ( ) 22 / rrs ∂∂  we constructed the 
Chebyshev spectral differentiation matrices of first and second order as we describe 
hereinafter. 
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Let Njj ..0, =ξ  be the interpolation points and { }Nuuu K,, 10  be the components of 

the eigenvector u . We approximate the eigenfunctions with truncated Lagrange series 
expansions of form 

( ) ( )∑
=

ξ⋅=ξ
N

0k
kk Luu , ( ) ( )∑

=

ξ⋅=ξ
N

0k
kk Lvv , ( ) ( )∑

=

ξ⋅=ξ
N

0k
kk Lww , ( ) ( )∑

=

ξ⋅=ξ
N

0k
kk Lpp . 

Let as consider, for a simpler explanation, that 2=N . Then { 1,0,1 −∈ }ξ  and the 

eigenvector u  can be expressed is the Lagrange expansion of form 
( ) ( ) ( )( ) ( ) 210 u15.0u11u15.0u −ξξ⋅+ξ−ξ++ξ+ξ⋅=ξ                        (5) 

Differentiating (5) yields  
( ) ( ) ( ) 210 u5.0u2u5.0'u −ξ+ξ−+ξ=ξ                                           (6) 

The spectral differentiation matrix D2 is the 3×3 matrix whose jth column is obtained by 
sampling the jth term of this expression at  ξ = 1, 0, and -1, yielding  

( )5.125.0;5.005.0;5.025.1D2 −−−−=                                (7) 
For arbitrary N, the entries of Chebyshev spectral differentiation matrix DN are 

6
1N2d

2
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+

= , 
6

1N2d
2

NN
+

−= , ( )2
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j
jj 12
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ξ−
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( )ji
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i
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=
+

, ji ≠ , 1N,,1j,i −= K , . 
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⎨
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otherwise1

N,0iif2
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For N collocation points, the derivatives are expressed as  
( ) ( )TN10N u,,u,uD'u K⋅=ξ ,  ( ) ( )TN10

2
N u,,u,uD''u K⋅=ξ                              (8) 

where D2N denotes the squared Chebyshev spectral differentiation matrix of first order. 
Because Chebyshev polynomials are defined on the interval [ 11−∈ ]ξ  and the 

physical range of our problem is [ ]maxr0r ∈ , we made use of the Möbius transformation 
(Figure 1) 

( )
maxr

a21b,
b
1ar +=

ξ+
ξ−

=ξ                                   (9) 

 
Figure 1.  The graphic representation of the Chebyshev collocation points (left, N = 100) and 

their corresponding points (right), maped into the physical range, for different values of 
parameter a (rmax=3) 

The differentiation matrices NΔ  in the physical coordinate r are obtained by a 

multiplication of the corresponding matrices in the standard interval [ ]11−  by the diagonal 
matrix S with the entries 

( ) jk
1

jjk d/drS δξ=
−   , NN DS ⋅=Δ                            (10) 
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where jkδ  is the Kronecker delta symbol and  is the spectral  Chebyshev differentiation 
matrix in the standard interval. 

ND

Because large matrices are involved, we numerically solved (3a-3d) using the Arnoldi 
type algorithm [8], which provides entire eigenvalue and eigenvector spectrum. 

For non-axisymmetrical modes (case 1n > ), our boundary value problem have been 
solved subject to Dirichlet boundary conditions. This was numerically implemented as part of 
spectral collocation method by discarding the no effect first and last columns of the 
Chebyshev differentiation matrices of first and second order and also ignoring the first and 
last rows.  

For implementing the boundary conditions in the axi-symmetrical mode , first we 
retained the location of rows in matrix M and their corresponding columns which were 
replaced with zero. Then we operate the H matrix by replacing some lines with their 
corresponding lines of identity block matrix, for Dirichlet boundary conditions imposed to 

0=n

u , 
v , p  (at 0 and rmax) and w  (at rmax), and also, a specific line has been replaced with its 
corresponding of the block Chebyshev differentiation matrix of first order, for Newman 
condition fulfilled by w  at limit 0. 
 

3.2. Numerical results 
In case n = 2, for given parameters Re = 9000, α = 3.5, Q = 1, N = 90, the fluid system is 

stable, as can be seen in Figure 2a. 
For axy-simmetrical mode n = 0, having the same initial parameters, Re = 9000, α = 3.5, 

Q = 1, N = 90, the fluid system remains stable (Figure 2b). 

 a.  b.   
Figure 2.  a. Spectra obtained for the case n = 2, for given parameters Re = 9000, α = 3.5, Q = 
1, N = 90, the fluid system is stable; b. Spectra obtaned for the axysimmetrical mode n = 0, for 

given parameters Re = 9000, α = 3.5, Q = 1, N = 90, the fluid system is stable 
 

 Figures 3 a, b show the eigenvectors for the choosen eigenfrequency ω = 
0.000000000000453 - 9.281409796891595i for the mode n = 2, and ω = 0.000000000000453 - 
9.281409796891595i for the axysimmetrical  mode n = 0. 
 Figures 4 a, b depict the perturbed azimuthal velocity for the considered modes. 
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Figure 3. The eigenvectors for n = 2 mode, respectively for n = 0 mode 

      
Figure 4. The perturbed azimuthal velocity for n = 2 mode, respectively for n = 0 mode 

 
4. SUMMARY AND CONCLUSION 
 
We have made a numerical investigation upon the temporal stability of a trailing swirl 

flow, namely the Q vortex, subject to infinitesimal perturbations. We have implemented a 
temporal stability analysis method based on Chebyshev Gauss-Lobatto spectral collocation 
technique and we numerically obtained information on the state of the fluid system. 

Considering the motion in a base plane, we captured the vortex in the next moment of 
its formation, and we obtained a simplified model, performing a temporal stability analysis at 
the base of the swirl structure.  
 
 
REFERENCES  
[1.] Alekseenko S.V., Kuibin P.A., Okulov V.L., Theory of concentrated vortices, Springer-Verlag Berlin 

Heidelberg, 2007. 
[2.] G.K. Batchelor, Axial flow in trailing line vortices, J. Fluid Mech 20:645-658, 1964. 
[3.] Bistrian D.A., Maksay Şt., Approximate method for numerical investigation of temporal stability of 

swirling flows, Proceedings of International multidisciplinary symposium “Universitaria SIMPRO 
2008”, Petroşani, 2008. 

[4.] Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A., Spectral methods-Evolution to complex 
geometries and applications to fluid dynamics, Springer Berlin Heidelberg New-York. 

[5.] Fornberg, B., A practical guide for pseudospectral methods, Cambridge University Press,  
Cambridge, 1996. 

[6.] Huerre P., Rossi M., Hydrodynamic instabilities in open flows. In Hydrodynamic and Nonlinear  
Instabilities (eds. C. Godreche, P. Manneville), Cambridge University Press, 1998. 

311  



 

ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA – JOURNAL OF 
ENGINEERING. TOME VI (year 2008). Fascicule 3 (ISSN 1584 – 2673)  

 

[7.] Korrami M.R., Malik M.R., Ash R., Application of spectral collocation technique to the stability of 
swirling flows, Journal of Computational Physics 81, 206-229, 1989. 

[8.] Orszag S. A., J. Fluid Mech. 50, 689, 1971. 
[9.] Saad Y., Iterative methods for sparse linear systems, PWS Publishing Company, Boston, 1996. 
[10.] Trefethen L.N., Spectral methods in Matlab, SIAM, Philadelphia 
 
 

312  


	REDUCED MODEL FOR TEMPORAL STABILITY  
	OF A Q-VORTEX 
	 
	 
	 

