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ABSTRACT  
The behaviour of certain resonant acoustic cavities is analyzed. The relative amplitude of the pressure 
wave on the lateral surface is calculated for a cylindrical cavity of elliptical cross-section. The amplitude 
of the coherent noise signal resulting from the absorption of the windows that close the cavity is also 
considered. The amplitude of pressure where the microphone is placed, for spherical and semi-spherical 
cavities without windows, excited by a led located in the centre, is also calculated. The results are 
compared with those obtained for a typical cylindrical cavity of circular section with the laser beam 
centred in its axis. 
Keywords:  
photo acoustics, coherent noise, quality factor.   

 
 
 
 

 1. INTRODUCTION 
 

 The cylindrical cavities of circular section have been and are broadly used in photo acoustics 
investigation [1]. To increase the response of the cell, exciting diverse acoustics vibration mode, 
some investigators have displaced in parallel form the laser beam from the cylinder axis toward 
the lateral wall [2], others have proposed a new internal designs for the cylindrical cavity, with the 
same objective [3]. In all the cases it breaks the symmetry of the cylindrical cavity to excite other 
resonant modes, instead of the fundamental one, in order to increase the acoustic signal at 
microphone. The idea of using cavities with other symmetries also pursues the objective of 
increasing the resonant response at microphone. Therefore, the cylindrical cavity of elliptic cross 
section, the spherical cavity and the hemispherical cavities resonant responses are analyzed. 
 The eigenfunctions of Helmholtz equation in coordinate cylindrical elliptic, the Mathieu’s 
functions, especially those of even parity and period π have got a maximum in the centre, at the 
focuses of the ellipse and in the ends of the greater and minor axes. The Mathieu’s functions of 
even parity and period 2π present maxima at the focuses of the ellipse and in the ends of the 
greater axis. Therefore, illuminating with a laser the gas inside the cavity in those regions where 
the Mathieu’s functions (that represent to the pressure) have a maximum, the maximum 
efficiency is achieved in the generation of the photo acoustic phenomenon. This is the foundation 
to propose the use of a resonant cylindrical cavity with elliptic cross-section.  
 The semi-spherical cavity is obtained by cutting the spherical cavity with an equatorial 
plane. By supposing the plane is a perfect acoustic reflector, the self frequencies and self functions 
of the semi-spherical cavity are equal to those of the spherical cavity.    
 The spherical and semi-spherical cavities, excited by a led in their centre, do not require 
windows for their operation: it implies to eliminate the coherent noise. In this cavity, the source is 
placed at the vertex of the conical excitation volume. Modulating the power source to a self-
frequency of the cavity, is achieved the cavities get excited in a self-function.   
 

 2. GENERAL EXPRESSION OF THE PRESSURE IN A RESONANT CAVITY    
   

 The generation of acoustic and thermal waves in gases is governed [5] by the linear equation 
wave for the pressure p:   
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                                                          (1) ( ) ( ) ( ) ( )trHttrpctrpt ,1,22,2 rrr
∂−=∇−∂ σ

where c, σ and H are, respectively, the speed of the sound, the adiabatic coefficient of the gas and 
the heat density deposited in the gas by absorption of the light.   
 Equation (1) has two independent solutions: a weakly acoustic wave dumped with 
wavelengths in the centimetres range, and a heavily thermal dumped wave, with wavelengths in 
the submillimeter region [4]. This thermal wave does not propagate beyond the distance of a few 
wavelengths; then it can be observed only in the vicinity of the exciting light beam.   
 All the closed cavities used as optoacoustic cells have acoustic resonances and their 
vibration modes are the solutions of the homogeneous equation of waves:   

( ) ( ) 0,22,2 =∇−∂ trpctrpt
rr

 

For a temporary variation of harmonic type, it becomes the Helmholtz equation:   

                                            ( ) ( ) 022 =+∇ rpkrp rr
                                                                   (2) 

 The solution of the equation of inhomogeneous wave, equation (1), can be written [1] as:    
                                       ( ) ( ) ( ) ( )rjpt

j jAtAtrp rr .0, ∑+=                                                             (3)                            

 Since the eigenfunctions of the Helmholtz equation are orthogonals, the coefficients Aj 
(where j represents a cavity oscillation mode, that is, a ternary r, γ, n) can be calculated by means 
of the expression [1]:   
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 The integration region in the integral of the numerator of Aj(t), V(F), is the illuminated 
volume by the laser; in the integral of the denominator the volume V is the total volume of the 
cavity. Qj is the factor of quality of the cavity for the j mode; ωj is the resonance angular frequency 
of the cavity for that mode and ω it is the angular frequency that excites the cavity.     
 Then, the integration region V(F) is the volume of the acoustic emission source as much for 
the signal as for the noise; in the denominator of A0, V is the total volume of the cavity. Qj is the 
factor of quality (due to the superficial losses) of the cavity for the mode j; ξ is the maximum value 
of the specific acoustic conductance [3, 4] and informs with regard to the phenomena of energy 
losses in the interface among the gas (N2 in our case) and the cavity internal surface. On one hand 
these losses are due to the transfer of heat of the gas to the wall (by gas viscosity); for other hand, 
the losses are due to the diffusion of the heat from the sound wave to the wall, both in the very 
thin layer of adjacent fluid to her. For the nitrogen, the maximum value of ξ is 3.67 x 10-3.   
 In the next calculations, the small difference of temporary phase introduced by A0(t) in the 
equation (3) was considerated.   
 
 3. EIGENFUNCTIONS AND PARAMETERS OF THE ELLIPTIC RESONANT CAVITY   
   
 The equation (2) can be solved by separation of variables in coordinated cylindrical elliptic 
(u, v, z) [5]. The transformation of the Cartesian coordinates to the cylindrical elliptic ones is:  

.cosh .cos . . ; 0 0 2
2 2

d d
x u v y senhu senv z z u v π= = = ≤ < ∞ ≤ ≤  

where d is the interfocal distance of the ellipse. Given d, for each value of u = C (with constant C) 
a particular ellipse is obtained.     
 The solutions of the equations in u and v are the Mathieu’s functions Sp2r+γ(s,v) and 
Sp2r+γ(s,iu), [6]. Then, the eigenfunctions of the Helmholtz’s equation can be written as:   

                               ( ) ( ) ( ) ( )LzniusrSpvsrSprjp /cos.,2..,2 πγγ ++=
r

                              (5)    

where ( )rp j
r

 is the eigenfunction and j symbolize r, γ, n ternary. L is the cavity length. p, in the S 

expression, indicates the even or odd parity of the function; γ takes 0 or 1 values, when the 
functions of Mathieu are of period π or 2π respectively. The sub index r enumerates the 
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eigenvalues and the parameter s is related with the frequency and the interfocal distance of the 

ellipse by cfds π= . The angular functions of Mathieu, those of argument , are lineal 
combinations of sines or cosines (according to the parity) with tabulated coefficients [7]. The 
radial functions of Mathieu, of argument u, are lineal combinations of products of Bessel‘s 
functions with argument given in function of u and their coefficients are also tabulated [7].     

v

 The eigenfunctions depends on z as ( )co s zk z , with Lnkz /π= , where n=0,1,2,…Since 

, k( 22 2 2 2 /t zk k k f cπ= + = ) z is limited by the values of k. kt is the number of traverse wave.      

 The cavity parameters were chosen to be able to excite: 1) the even parity and period π 
modes (excited when the laser enters to the cavity for the centre of the ellipse); 2) the even parity 
modes and period π and 2π (when the laser enters for the focus). Therefore, the A0 and Aj values 
were calculated for these modes, and the pressure for different points of location of the 
microphone, equation (3), with mrr

rr
=  ( mr

r
 is the microphone coordinates). These results were 

compared with those of an equivalent resonator of circular section. Both cavities (elliptical and 
circular) have same excitement volume and both oscillate to the same frequency. The laser that 
excites both cavities is supposed to be the same one. 
 Once it was chosen a parameter s, the solution of the boundary condition for the eigenmode 

pj, ( ) 0. =∇ surfacej nrp )rr
, gives the u values that will determinate the elliptical contours when d is 

fixed, where pj is maximum. For the calculation of pj, kz has been considered null (n= 0).  
   
 4. LASER CENTERED IN THE AXIS OF THE CAVITY ELLIPTIC SECTION   
   
 For this mode of excitement, a 2663 Hz laser modulation frequency was chosen to excite the 
fundamental mode of a cylindrical cavity of circular section with a diameter inside the range of 
the dimensions usually used in photo acoustic experiences. The elliptic cavity is excited in the 
even Mathieu function, of period π with r=0 and γ =0. Associated to that frequency, several s and 

d values excite the cavity: each pair of them determines a 
different ellipse and, therefore, different areas for the 
section of the cavity.  
 In table 1, the biggest a and the smallest b semi axes 
are specified, and the eccentricity e of the resulting ellipse 
when s = 4 and d = 8.4 cm, determinate for the excitement 
frequency (2663 Hz).   With each pair of parameters (a and 

b), the corresponding values of Aj were calculated; the results were compared with that of a 
resonator of equivalent circular section (it resonates to same frequency).   

Table 1. Parameters of the elliptic 
section cavity for centred laser 
a [cm] b [cm] 

 
 5. LASER ENTERING FOR THE FOCUS OF THE CAVITY OF ELLIPTIC SECTION   
 

e 
6.90 5.47 0.61 
8.73 7.65 0.48 

Table 2.  Parameters of the elliptic 
section cavity for the laser in the focus 
d (cm) 

 In this case, inside the elliptic section cavity the 
Mathieu functions of even parity and period π and 
2π, for r and γ different values are excited; they 
present relative maxima in the focuses of the ellipse 
and in the ends of the biggest axis. With the same 
laser modulation frequency (2663 Hz), the ellipses 
obtained have smaller area than those corresponding 
to the previous case.     

a (cm) b (cm) e 
4,202 3.89 3.27 0.54 
5,042 3.90 2.98 0.65 
5,88 3.92 2.59 0.75 

6,3025 3.93 2.34 0.8 
 In table 2, the interfocal distance d, the biggest 
a and smallest b semi-axes and the eccentricity values 

for the resulting ellipses are specified, when the excitement frequency is 2663 Hz.    

6,72 3.94 2.04 0.85 
 

 

 6. CALCULATION of A0 AND AJ FOR ELLIPTIC SECTION CAVITY 
   

 6.1 Signal case 
 The calculation of A0 and Aj were made (in both forms of entrance of the CO2 laser to the 
cavity) for the case in that the laser frequency modulation is equal to the resonance frequency of 
the cavity in the mode chosen, j. It was considered that the gaseous medium fills the cavity is 
nitrogen to the atmospheric pressure and ambient temperature (20°C) with ethylene traces that 
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suppose a very small absorption of the laser radiation, in such way that, to facilitate the 
calculations, it is possible to consider that the CO2 laser does not modify its intensity in the 
itinerary inside the cavity. This means, mathematically, not to include a dependence regarding the 
axis z. Also it is considered that the intensity of the laser beam is evenly distributed in its section 
(diameter supposed: 1 cm). With these considerations the function H(r) leaves as H outside the 
integral of the numerator in equations (4). The jacobian of the transformation for the integral of 

Aj is: ( ) ( )vudJ 222 sinsinh2 += . The volume source V(F) is, in this case, the volume reached by the 

laser radiation: a cylinder of 1 cm of diameter and longitude L equal to the cavity length. V is the 
total volume of the cavity. With these considerations, the time independent expressions of A0 and 
Aj are:   
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   The results will be relative to the heat density H. This doesn't prevent the comparison 
among the elliptic and cylindrical cavities responses, because both have same length, both are 
excited by the same laser and both contain the same gases in equals conditions; then, the laser 
absorption will be made in them in equal form.   
   6.2 Noise case 
 Among the diverse sources of noise, the main one is due to the windows that close the cavity 
generate coherent noise: the windows absorb part of laser energy and they heat. The heating 
energy absorbed by the windows is then transmitted to the cavity gaseous medium, generating an 
acoustic wave in the characteristic modes of the cavity oscillation. The wave of heat, or thermal 
mode, in the gas by this heating source decays quickly, just as in the case of the wave of heat that 
arises by laser absorption in the medium and it origin the acoustic signal.       
 The heating power deposited from the windows in the gaseous medium, N2, generates a 
thermal wave whose reach is given by the characteristic propagation longitude in the thermal 

mode [4], nearly to )( fC
K

pρδ = , in which the heating conductivity of the gas is given by 

K=23.86 x 10-3 W(m.°K)-1; the density for ρ =1.16 kg.m-3 for atmospheric pressure and ambient 
temperature; the constant pressure heating capacity Cp=1.039 J(g.°K)-1; and the excitement 
frequency of the cavity is f = 2663 Hz. Then, it is assumed the heating source volume is given by 
the product of the cross section of the laser beam by the longitude δ. Given the small value of δ (~ 
10-5 m) there will be a noise heat density Hr (different from H), constant in the region within δ: it 
allows extracting Hr outside the integral of the coefficients Aj, just as the signal case, equation (6).    
 This approach to the problem allows to carry out a similar calculation for the circular 
section cavity and to compare both.   
 

 7-RESULTS FOR THE ELLIPTIC SECTION CAVITY  
   
7.1 Relative signal pressure at the microphone position: laser entering by the cavity axis 
 The A0 and Aj values, equation (5), for the resonant frequency (2663 Hz) of the elliptic 
section cavity given by the even period π Mathieu function with r=0 and γ=0, with s = 4, were 
calculated. By means of the equation (3), the relative pressure in term of H at the microphone 
position was obtained. The microphone is located in the extreme of the smaller ellipse axes (of 
cylindrical elliptic coordinated given by u=uC, v = π/2 and Cartesian coordinated x=0, y=b): this 
is one of the points which the pressure value is maximum. The values are shown in table 3.   

Table 3. Relative pressure at the microphone (laser in the axis of the cavity) 
e a [cm] b [cm] Relative pressure in x=0, y=b 

0.61 6.90 5.47 -1.7 x 10-4

0.48 8.73 7.65 -1.1 x 10-4

 

 The values of the relative pressure in the last column of the table 3 for the even function of 
period π with r = 0 were obtained. The contributions of the functions with r = 1 and r = 2 were 
calculated, and they were not taken into account because they are 10-5 or smaller.   
 The minus sign in the relative pressure is due to the sign of the maximum of the function 
pj(r) on the contour, opposite to the central maximum.   
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 To compare, the coefficients given by the equation (5) for a cell of circular section that 
resonates to the same frequency (2663 Hz) in the longitudinal mode k=0 , azimuthal m=0 and 
radial n=1, were calculated. The radius of this cell is R = 8.05 cm. The pressure eigenfunctions 
pj(r) for the circular section cavity are given for: 

                   ( ) ( ) ( ) ( )LzkRrnmmJmrjp /cos./,cos ππαϕ=                          (7)                

where L is the longitude of the cell and αm,n is the nth. root of the radial derivate of the Bessel 
function of m-order (with r=R, on the contour, in some point the microphone is located). The 
value of the α0,1 root is 1.2197. The longitude L of the cell is not necessary to specify because it 
does not appear in the expression to calculate.   
 The coefficients, equation (5), were multiplied by p0,1,0(rm), equation (6), with rm = R 
(microphone on the lateral surface). The pressure value, -8.5 x 10-5, at the microphone position, 
was obtained. This value is one order of magnitude smaller than those obtained under equivalent 
conditions (same frequency of resonance; equal constant adiabatic of the gas that fills the interior 
of both cavities; illuminated by the same laser) for the elliptic section cavity (chart 3). The minus 
sign has identical explanation to the previous case.   
 The Qj value for the cylindrical section cavity is bigger than those corresponding to the 
modes in that the elliptic section cavity can oscillate because, in the elliptic section cavity, the 
multiplicity of modes for a single resonance frequency diminishes its cavity selectivity.   
7.2 Relative signal pressure at microphone position: laser entering by the cavity focus  
 The relative pressure to H, equation (3), was calculated in the extreme points of the larger 
axis of the elliptic contour. In these points, the even period π and 2π Mathieu functions have 
relative maxima and they are favourable positions to locate the microphone. The relative pressure 
to H was also calculated at the end of the smaller axis because the even period 2π Mathieu 
functions have a relative maximum in that point, and it is also a favourable position for the 
microphone location. The resonance frequency is 2663 Hz in all the cases. It is assumed that the 
laser beam is cantered in one of the focuses (what allows to excite the even modes of periods π 
and 2π). The laser beam was thought to be  of 1 cm of diameter with a cross section circular 
surface.   
 With the values given for the frequency and the cavity length (L = 20 cm), n only can take 0, 
1, 2. 3 values (equation (2)). Since the microphone is located in some point 2Lz =  of the lateral 

surface cavity, when replacing this value in anyone of the eigenfunctions , equation (3), ( )rp j
r

)2cos()/cos( ππ nLzn =  will be different from zero for n = 0, 2. For n = 2 the Mathieu 

eigenfunctions are multiplied by )2cos( Lzπ . When integrating on z between 0 and L for the 

calculation of the Aj coefficients, the integral ( )∫ =
L

dzLz
0

0.2cos π . This indicates they can only be 

captured in the microphone location the modes given by the equation (2) with n = 0.    
 The used modes are those even Mathieu functions of period 2π with γ = 1 and r = 0, 1; and 
the even period π functions with γ = 0 and r = 0, 1, 2.    
 The relative pressure for different values of the interfocal distance cavity, are shown in table 4.   

Table 4. Relative pressure to H (multiplied by 104) at microphone location points 
d (cm) e x=a y=0 x=-a y=0 x=0 y=b 
4,202 0.54 8.4 6.12 6.88 
5,042 0.65 6.66 3.32 4.44 
5,88 0.75 7.08 1.95 3.6 

6,3025 0.8 10.6 4.19 6.06 
6,72 0.85 13.9 5.22 7.72 

a: larger semiaxis; b: smaller semiaxis; d: interfocal distance; 
e:  eccentricity 

 

 In figure 1, the relative pressure versus the interfocal distance, is shown for different 
microphone positions.  
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Figure 1. Relative pressure (by 104) 

   
 7.3 Signal noise: laser beam entering by cavity focus  

The coherent noise signal was calculated for both elliptic and cylindrical cavities for the 
same excitement frequency of 2663 Hz. In the elliptic case, the noise source volume in the gas is 
different to the signal source volume; then k  will be zero for n=0 and 31.42 m-1

z  for n=2. This 
implies that in the cavity they can get excited a transverse mode with k =35.76 m-1

t , besides the 
corresponding to n=0 with k =47.60 m-1. t

 For the calculation an elliptic section of interfocal distance d = 6.72 cm with semi axis a = 
3.93 cm and b = 2.44 cm was chosen, and it was located the microphone at the end of the smallest 
semi axis, in L/2. In this case, the noise pressure at the microphone, relative to the noise power 
density H , is 3.32 x 10-7.  

r

 It is assumed that the circular section cavity is closed by identical windows and is excited of 
equal forms as the corresponding elliptic cavity. In this case, the noise pressure at the microphone 
relative to the noise power density H , is 1.27 x 10-7.   r

 7.4 Quality factor Q   
 The Qj values of both cavities, considering the superficial losses mechanisms only, were 
calculated. The quality factor of circular section cavity is 1200, as long as the values for the 
different oscillation modes of the elliptic section cavity (and for different interfocal distances) 
vary between 100 and 350. These values for the elliptic section cavity are smaller than those of the 
circular section cavity in one order of magnitude: it represents a selectivity disadvantage. The 
higher signal amplitude for the elliptic section cavity could compensate this disadvantage.    
   
 8- CIRCULAR AND ELLIPTIC SECTION CAVITIES: CONCLUSIONS  
 

 All the calculated relative signal pressure values at the microphone location in the section 
elliptic cavity when the laser goes in by one of the focuses are an order of magnitude larger than 
the one obtained for the circular section cavity oscillating in the mode 0,1,0 (to the laser 
modulation frequency of 2663 Hz).    
 For the coherent noise generated by the heating of the windows, the noise signal at 
microphone has greater relative amplitude than that for the elliptic section cavity in all the 
analyzed cases.  

 In this paper, it is not possible to 
calculate the signal-noise relationship 
for each cavity: the signal amplitude is 
calculated in relative form and other 
sources of noise were not considered. 
They can be related to the signal 
amplitudes calculated for both cavities 
on one hand and those corresponding 
to the noise amplitudes calculated for 
both cavities, on the other. For an 
elliptic section cavity of interfocal 
distance d=6.72 cm and eccentricity 

0.85, with the microphone located at end of the smallest semi axes, the relationships before 
mentioned are respectively 6.4 and 2.6. This result is favourable, in the calculation, to the elliptic 
section cavity. 

 
Figura 2. Acoustic filtre 
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  Since the group of the elliptical cross section surfaces is between 35 and 40 cm2, this is 
smaller than the circular cross section surface (203 cm2) and it let us suppose that the volumetric 
losses would be smaller in the elliptic section cavities than those with circular section.    
 A possible form to diminish the influence of the noise due to the windows heating that also 
generates a opt acoustical signal, is to separate each window of the resonant cavity by means of an 
acoustic filter. This filter could consist of two cylinders like it indicates in figure 2 (the plane of 
this view is perpendicular to the smaller semi axes than the ellipse; the laser beam enters by the 
focus of the elliptic section cavity).   
        Cavity 1 is a cylinder non resonant to the excitement frequency (2663 Hz).  Cavity 2 is a 
cylinder of a quarter wavelength and with a section diameter close by the diameter of the laser 
beam. Then, both cavities, 1 and 2, are not resonant. 

 

  For circular section resonant cavity several investigators have proposed diverse 
alternatives more or less successful to eliminate the noise [2, 3].  
 These calculations are a strong indication that the cavity of elliptic section excited by the 
laser beam centred in one of the focuses would have a superior response than an equivalent 
circular section cavity (it oscillates in the same frequency). The frequency used for the calculation 
was chosen to make the future experimental determination.   
 

 9. SPHERICAL AND SEMISPHERICAL CAVITIES 
 

 The proposal light source in the semi spherical cavity is a diode led located in the centre of 
the equatorial plane that closes the cavity. The advantage is the led can be modulated 
electronically to frequencies as far as 10 KHz. These frequencies can not be reached when the 
source is a mechanically modulated laser (CO2 or another). This assembly enables to eliminate the 
presence of the windows (where the laser radiation enters to the cavity) as sources of coherent 
noise. The led emits in a cone whose maximum opening angle is 30°; the microphone is located 
where the pressure is maxima (in the vertex of the cavity). 
 The spherical resonator, without windows, is fed by a led located in the centre of the sphere; 
the excitement region is a cone with its vertex at the spherical centre. The microphone is at the 
point of symmetry axis of the cone on the spherical surface. 
 In both cavities the microphone is located in the point of maximum pressure.   
 9.1. Spherical cavity   
         The pressure eigenfunctions, solutions of the wave equation in the spherical cavity with axial 
symmetry, are expressed as [8]:   

( ) ( ) ( ) ( θθ cos....,
2
12

1

lll PrkJrkrp
+

−= )                                                                      (8)      

λ
π.2

=kThe index l = 0, 1, 2,… and m = 0. k is the wave number, , where λ is the wavelength 

correspondent to the resonant frequency. The function ( )rkJ
l

.
2
1

+
 is the spherical Bessel function 

[9], and ( )θcoslP  is the l-order Legendre polynomials.   
 The led emits the power inside a cone with maximum opening π/6. R is the spherical 

surface radius. The power density absorbed by the gas, H(r,θ), will be 

expressed as ( )
dV
dPrH −=θ, , where P(r,θ) is the power that spreads in 

the means and 

dr 

drPdr
r
PdP ... α−=
∂
∂

=R  is the power lost by the beam, 

deposited in the gas in an interval radial dr, being α the absorption 
coefficient.   

The differential of volume is given for ; A is the area 

of the spherical cap , being Ω the solid angle given by 

. Therefore, 

drAdV .=
2.rA Ω=

(∫ ∫ −==Ω π θ θπθϕθ2
0 0 0

0 cos1..2.. ddsen ) ( ) drrdV ..cos1..2 2
0θπ −=  and, in 

 Figure 3. Plane section 
of the conical active 
volume (led in the vertex) 

θ0 r 
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( ) ( ) 2
0

1.
cos1..2

.,
r

PrH
θπ

αθ
−

=consequence. . P is function of r but, since the absorption of the gas 

is very small ( 1. <<Rα ), in a first approach it is possible to assume it is constant and to extract it 
outside of the integral of the coefficients An. 
   Given the symmetry of the source, it is excited, inside the spherical cavity, the mode with 
l=2 and m=0. The radius of the spherical surface will be the one that makes zero the value of the 
pressure normal derived at the surface and that it assures no pressure nodes due to the function 
of Bessel, in all the volume.   
           Figure 4 represents the typical graph of the eigenfunction of the spherical cavity like θ 
function, given by the equation (7) for l = 2 with the radius like a parameter.    
 The main lobules of the eigenfunction are separated by a conical surface that represents the 
only nodal surface of the pressure inside the cavity, due to a zero of the polynomial of Legendre 
for l=2. This excited mode is not degenerated.   
 9.2. Semispherical cavity  
 The excitement modes of the spherical cavity are symmetrical with regard to the equatorial 

plane. The normal derivative of the pressure, respect to θ in θ=π/2, is 
zero. This implies that the equatorial plane of the sphere is a surface 
with a maximum of pressure: if it is replaced in their place an 
acoustical reflective surface (supposed ideal), the semi spherical cavity 
will have the same eigenfunctions than to the complete spherical 
cavity (lobules corresponding to the positive part of the vertical axis in 
figure 4).  
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 The semi spherical cavity is excited by a led -located at the centre 
of the equatorial plane that closes the cavity, with θ=π/2- that emits 
symmetrically in the address of the z axis inside the volume closed by 
a conical surface of 30° of maximum opening, it will oscillate in a 
single mode in agreement with the form of the excitement: the 
corresponding eigenfunction with l=2 and m=0, given by the equation 
(8). In particular, the radius of the cavity is determined by the first 
root of the derivative of the Bessel function. 
 With these considerations, the coefficients that enter in the 
development of the pressure, equation (3), are only A  and A0 l=2,m=0 
(this last one will be indicated as AFigure 4. Graphic 

representation of the 
eigenfunction inside the 

spherical cavity 

2). Equation (4), will be:   

( ) P
Ri

A ..
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20 α
ωπ
γ −

=  

keeping in mind the expressions of the power heating density deposited in the gas, of the 
differential volume and the factor of quality.  
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                                                                (9)                            

where θa is the semi-opening of the source emission cone and equal to π/12, R is the radius of the 

hemisphere, f is the led modulation frequency and 34.3....2. 1,0,2 === αππ R
v

fRk ; α2,0,1 is the first 

root of the derivative of the spherical function Bessel of order 2.5.   
 For a frequency of 2663 Hz, and relative to the product αP,  and A3

0 103.2 −×≈A 2=4.98. 
Since A  << A0 2 for all frequencies, A2 was not kept in mind for the calculation of the total pressure 
neither in module nor in phase.    
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 10. CALCULATION OF THE PRESSURE AT THE MICROPHONE   
   
 The pressure at the microphone was calculated by equation (3) for spherical and semi 
spherical cavities. This pressure is relative to the product α P since the coefficient A2, given by 
equation (4), was calculated relative to this product. Since both cavities have in their interior the 
same gas (N2) and the same impurity and they are fed by a led, both will receive the same 
excitement power. When varying the modulation frequency it should be changed the radius of 

both cavities, consequently, in 
order to excite in the mode l=2, 
m=0, the excitement volume 
will vary equally in both. The 
calculated relative pressure, at 
the microphone position, is a 
function of the led modulation 
frequency.    
 This calculation allows the 
comparison among the 
mentioned cavities and with an 
equivalent cylindrical cavity, of 
circular cross section [10]. The 
radio of this cylindrical cavity, 
resonant in a pure traverse 
mode, is variable with the 
modulation frequency of the 

luminous source and has an excitement volume similar to that of the spherical and semi spherical 
cavities. This cylindrical cavity is excited by a laser beam directed along its symmetry axis, with 
circular section. The calculation results are shown in figure 5.  

 
Figure 5. Relative pressure vs. frequency. SSC: semispherical 

cavity; CC: circular section cylindrical cavity; SC: spherical cavity 

                                 

 11. QUALITY FACTORS Q   
 

 The factor of quality Qn depends of the total volume and the internal surface of the cavity, 
equation (4). It was calculated for the semi spherical, spherical and cylindrical cavities, supposing 
all excited by same luminous power sources. The values calculated for all the cavities are 
independent of the modulation frequency, since the cavities were considered resonant for each 
frequency of the range (between 0 and 10000 Hz). This means that the radius, the volumes (as 
much the total as the active) and the surfaces of the spherical and semi spherical cavities were 
modified. In the case of the cylindrical cavity, the radius also varies with the variation of the 
modulation frequency of the excitatory beam. For this cavity it is kept in mind a corresponding 

variation in their longitude in order to equal their 
illuminated volume with that of the spherical and semi 
spherical cavities.    

Table 5. Quality factor Q 
Cavity Value 

155 Semi spherical 
 Under these conditions, the quality factor for all the 
mentioned cavities is independent of the frequency, and 
its value is given in the table 5.   

210 Spherical 
551 Cylindrical 

  

12. CONCLUSIONS   
 

 Figure 5 shows that, to any frequency, the calculated relative pressure at the microphone 
position is higher in the spherical cavity than in the semi spherical and in the cylindrical one, to 
equality of excitement power, and with the position of the luminous source indicated above.    
 We attribute the smallest performance of the semi spherical cavity in relation to the 
spherical cavity to is due to the fact that the plane that it closes the semi sphere is not ideal. It is 
not a perfect acoustic mirror; in the calculation it is related to the specific acoustic conductivity ξ.     
 An advantage of the luminous source assembly in the geometric centre of the spherical 
cavity or the centre of the plane surface in the semi spherical cavity is that the entrance of the 
luminous beam to the cavity doesn't cross windows as it does in the case of the cylindrical cavity.   
 Another advantage of the mentioned assembly is that it allows to use led like luminous 
sources easily electronically modulated until 10 kHz.   
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