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ABSTRACT: 
To describe the characteristics of a signal pulse and channel model for a radio wave communication 
through ionosphere, different electron density profiles for the ionospheric layer have been proposed 
earlier. In most cases the electron density variation was assumed to be abrupt. In this paper we 
consider a more general sech2 profile for a horizontally stratified ionosphere. This profile allows 
completely analytic treatment, and hence we obtain expressions for transmission distance and rise 
time of a pulse propagating through ionosphere. The result shows that rise time can be a real measure 
of the degree of distortion of the received pulses. 
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1. INTRODUCTION 
 

Research on propagation of electromagnetic waves through ionosphere is of great 
interest to communication researchers. Radio waves in the ionosphere are subject to some 
attenuation and distortion due to the presence of electrons and ions. The electrons being 
distributed irregularly within the ionosphere give rise to the reflecting property of the 
ionosphere. Hence the study of propagation of radio waves through the ionosphere 
necessitates the investigation of electron concentration variation within the ionosphere. 
Different electron density profiles for the ionospheric layer have been proposed earlier. In 
most cases the electron density transition was assumed to be abrupt i.e. a free space was 
assumed below the ionosphere. But in reality, electron concentration has a gradual transition 
from the ground i.e. there are finite non zero electron concentration even at ground. Such a 
realistic sech2 distribution profile can be used to study the accurate propagation 
characteristics of radio waves. 

The present paper deals with the propagation of radio wave packets or pulses through 
isotropic, horizontally stratified ionosphere. We assume the ionosphere to be collisionless 
and ignored the effect of earth’s magnetic field. Considering the sech2 model for electron 
distribution, briefly we review in Section 2 the transmission distance of a radio wave packet 
for oblique incidence, following the presentation in [1]. In Section 3, we have considered an 
ionospheric transfer function and studied the shape of a radio wave pulse received at the 
receiver after reflection from the ionosphere. Here we have seen that for faithful reproduction 
of pulse, rise time should be less than the time period of the signal. In Section 4 we have 
discussed the variation of rise time as we increase the pulse frequency towards MUF. We find 
out explicit relations for rise time in terms of the parameters of sech2 profile, following the 
steps given in [2]. We conclude our results in Section 5. 
 

2. TRANSMISSION PATH AT OBLIQUE INCIDENCE 
 

2.1 General Formulae  
To find out an expression for transmission distance of a wave packet from the 

transmitter to the receiver after reflection at the ionosphere, a Cartesian coordinate system 
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(x, y, z) is used with the directions x, y horizontal, and z vertically upward. The electron 
concentration N is assumed to vary along z direction only. Let the direction cosines along x, y, 
z are lx, ly, lz respectively. We assume the incident wave as a plane wave travelling obliquely 
upward. When this wave propagates through a medium of varying electron concentration, we 
can write the wave normal or refractive index vector at each height of the medium as  

 )]z(q,l,l[ˆ yx=μ                                                                (1) 

where q(z) satisfies the Booker quartic equation. It is useful to imagine the ionosphere as a 
number of thin discrete homogeneous strata. Thus for a given plane wave in any one stratum, 
lx and ly do not change following Snell’s law. For isotropic medium, q(z) can be expressed as  

                                                                                   (2) 2
y

2
x

22 llq −−μ=

and the expression of phase path is  

                                                                             (3) ∫++=
z

0
yx dzqylxlP

Thus the ray tracing equations are  

        ∫∫ ==
z

0
y

z

0
x q

dzly,
q
dzlx                                                      (4) 

Without any loss of generality we can assume that the wave is lying in the x-z plane and 
that the wave starts from a transmitter at origin (x, y, z) = (0, 0, 0). If the wave is incident 
obliquely making an angle θ with the vertical, we can write lx = sinθ, ly = 0. Thus equation (2) 
and (4) can be written in this case as  

                                                                                         (5) θ−μ= 222 sinq

       0y,
q
dzsinx

z

0

=θ= ∫                                                         (6) 

On the downward part of the ray after reflection at a point z = zr, where q = 0, the ray 
remains in the x-z plane. So the horizontal distance after which the wave again reaches the 
ground is given by 

       ∫
Ω

θ=
q
dzsinD                                                                      (7) 

where Ω is the contour for complex z which starts and end at z = 0 and circumvents the 
reflection point zr.  
 

2.2 Calculation for sech2 distribution  
A more realistic electron concentration profile, where the transitions are believed to be 

gradual, is the sech2 distribution profile given as  

               ⎥
⎦

⎤
⎢
⎣

⎡ −
=

a
)hh(hsecNN m2

m                                                               (8) 

where Nm is the maximum electron concentration at height h = hm above the ground and ‘a’ is 
the thickness of the layer. Here we changed the variable from z to h for our calculation 
purpose. Assuming ξ = (h – hm)/a, we can have the refractive index expression for the profile 
as  

                 
2

1

2
2

2
p )(hsec
f

f
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ξ−=μ                                                               (9) 

where fp is called the penetration frequency. Now equation (5) can be written as  

             )(hsec
f

f
cosq 2

2

2
p22 ξ−θ=                                                        (10) 

Since for this profile we have a nonzero electron concentration below the ionosphere, 
even at ground, we use equation (10) for the entire range in equation (6) and calculated the 
expression for x as  
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where ( ) )
a

h
(hsec

f

f
cos0hqq m2

2

2
p2

0 −θ===  

Now at the reflection point i.e. at the top of the trajectory ∞→dh
dx   i.e. q = 0, and at 

that point x = ½ D. Thus from equation (11) we find 
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 (a) (b) 

Figure 1. Variation of transmission distance d (in km) against f / fp for different values of θ (degree). 
(a)  for a = 10 km; and  (b)  for a = 100 km 

 (a) (b) 
Figure 2. Variation of transmission distance d (in km) against θ (degree) for different values of f / fp. 

(a) for a = 10 km; (b) for a = 100 km 
 

From equation (12) it is evident that D is a function of frequency f and angle of 
incidence θ. Figure 1(a) and (b) shows the variation of D with frequency ratio f / fp for 
different angle of incidence. The curves are drawn for layer thickness,   a = 10 km and 100 
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km, the highest value corresponding to normal F layer and lower value for E layer. We 
assume that the height of the lower layer of ionosphere from ground is 80 km. From Figure 
1(a) it is clear that when f <= fp, reflection from E layer occurs for all θ, but when f > fp then 
reflection will not be found for lower θ i.e. as we move towards the normal incidence. From 
the plot in Figure 1(b) it is evident that no F layer reflection occurs when f << fp. The same 
conclusion can be drawn from the plots of D as a function of θ for various values of f / fp, 
which is shown in Figure 2(a) and (b). From both the figures we also can say that as we go 
beyond the penetration frequency fp, the possibility of reflection decreases, and for f = 2fp 
reflection will be possible for a short range of θ (~ 650 to 800). 
 

3. SHAPE OF THE RECEIVED PULSE 
 

Let we consider a carrier cos(2πf0t) is amplitude modulated with pulse m(t) of period T 
>> f0

-1. So the modulated signal is  
                 S(t) = Re [m(t)exp(2π if0t)]                                                     (13)  

In terms of Fourier transform expression the signals m(t) and S(t) are given by  

                                                                       (14) df)ift2exp()f(M)t(m π= ∫
∞

∞−

                                                           (15) df)ift2exp()ff(MRe)t(S 0 π−= ∫
∞

∞−

The location of the pulse at any time t can be expressed by the group path as  /P

            
df

)Pf(d)z(tcP/ ==                                                           (16) 

Using equation (3) the equation (16) can be written as  

dz
f

)Pf(ylxlP
z

0
yx

/ ∫ ∂
∂

++=                                                       (17) 

Now after a propagation delay P/c the received signal expression is as follows 

           df)c
Pif2exp()ift2exp()ff(MRe)t(S 0r π−π−= ∫

∞

∞−

                                    (18) 

cf. equation (11.119) of [1].  
Extracting the high frequency carrier term from equation (18) and introducing a new 

measure of time c
Pt

/
−=τ  and also substituting φ = f – f0, the received pulse can be 

written as  

ϕτϕπ⎥⎦

⎤
⎢⎣

⎡ φ++ϕ+ϕ−
π

ϕ=τ ∫
∞

∞−

d)i2exp()}f(P)f(P)f()f(Pf{
c

i2exp)(M)(m 0
/

0000r              (19) 

In another way, if we consider g(t) as an ionospheric transfer function, then the 
expression for received pulse can be found as  

                                                         (20) ϕτϕπϕϕ=τ ∫
∞

∞−

d)i2exp()(G)(M)(mr

where                         

∫
∞

∞−

ϕϕπϕ= d)ti2exp()(G)t(g                                                    (21) 

Comparing equation (19) and (20), an expression for the transfer function is given as   

     ⎥⎦

⎤
⎢⎣

⎡ ϕ++ϕ+ϕ−
π

=ϕ )}f(P)f(P)f()f(Pf{
c

i2exp)(G 0
/

0000                                     (22) 
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If it is assumed that f is closer to f0 i.e. φ is small, then Taylor series expansion can be 
used in equation (22). Hence neglecting the higher order terms from the series and 
substituting 2

/2/
2

//
1 df

PdP&df
dPP ==  one can find  

              ⎥⎦

⎤
⎢⎣

⎡ ϕ+ϕ
π

−=ϕ )f(P
3
1)f(P(

c
iexp)(G 0

/
2

3
0

/
1

2                                               (23) 

Two special cases are now considered: 
(1) If φ is sufficiently small, the first term in equation (23) dominates over the second. In this 
case the transfer function is  

                    ),
f
iexp()(G 2
1

2

1
ϕπ

−=ϕ                                                               (24) 
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1
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π
+π−= ,                                                          (25) 

characterized by the time        

                ( ) 2
1/

1
1

11 cPft == −                                                                       (26) 
Hence the propagation channel acts like a low pass filter with cut-off frequency f1 or rise 

time t1.  

(2) When the term  dominates over the first term, the transfer function is /
2P

,
f
iexp)(G 3
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So, now the channel is characterized by the time   

                ( ) 3
1/

2
1

22 cPft == −                                                          (29) 

Hence the propagation channel acts like a low pass filter with cut-off frequency f2 or rise 
time t2. In this case the transfer function is represented by Airy function. If the rise time 
tends to zero, it can be found from equation (21) that the transfer function tends to a delta 
function. Thus we can conclude that, for zero rise time the received pulse will be undistorted. 
So smaller rise time gives better reproduction of the received pulse.  

To verify this statement, we analyze both cases stated above for a triangular pulse of the 
form: 

            

2
Tt0t

T
21A

0t2
Tt

T
21A)t(m

≤≤⎟
⎠

⎞
⎜
⎝

⎛
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⎝

⎛
+=

                                                (30) 

We obtain explicit expressions for the received pulse mr( τ ) using the equation (20). 
The expressions are not given here but the results are shown in Figure 3, which illustrates the 
absolute value of received pulse when m(t) is convoluted with the transfer function g1(t), (left 
panel) for different values of t1 / T . The same pulse when convoluted with g2(t) are shown in 
right panel of Figure 3 for different values of t2 / T. From these illustrations, it is apparent 
that the pulse will be clearly distinguishable if the rise time for the first case |t1| ≤ T / 2 and 
for the second case also |t2| ≤ T / 2. The consequences of this result are that firstly, smaller 
rise time gives better reproduction of the signal and secondly, as we increase the frequency of 
the transmitted signal rise time will decrease. 
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Figure 3. The dotted curves are for initial triangular pulse m(t) of period t and the solid lines are the 
real part of the received pulse mr(t). Left panel shows the received pulse for transfer function g1(t) for a 
number of values of  t1 / t. Right panel shows the received pulse for transfer function g2(t) for a number 

of values of t2 / t 
              

4. ESTIMATION OF RISE TIME 
 

In this section we use our results of Section 2 for sech2 profile to find out the variation 
of rise time with frequency of transmission. First we find out explicit expressions for and /

1P
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/
2P considering the sech2 profile, then we use these expressions in the formula given below to 

calculate the rise time. We choose the same coordinate system and same direction of 
propagation as described in Section 2.  

Using the equations (6) & (7) the equation (17) for group path at the receiver can be 
written as  

                      ∫
Ω

θ+θ=
q
dzcossinDP 2/                                                   (31) 

Now using the equation (10) for sech2 profile we verified that this profile satisfies the 
Breit and Tuve’s theorem 

                            θ= sin
DP/                                                            (32) 

Using equation (32) and the relations 2
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cf. equation (43) and (51) of  [2].  
For our calculation of rise time we use a new variable k = Pff . Now from the equation 

(12) for D, we obtain the derivatives as follows 
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 (a) (b) 
Figure 4. The absolute value of rise times (in μs): t1 (solid line) and t2 (dotted line) as a function of f / fp 

for angle of incidence θ = 300 in fig (a) and 450 in fig (b) for sech2 profile. The profile used here 
assumed to have fp = 5 MHz 
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Hence changing the variable f in equations (33) and (34) to k and then substituting 
equations (35) and (36) we find explicit relations for  and . Then from the relations (26) 

and (29), expressions for the rise time t

/
1P /

2P

1 and t2 are obtained in terms of the parameters of the 
sech2 profile. These expressions are not given here but we confine ourselves to numerical 
solutions for those expressions. 

Our results are shown in Figure 4 for two angles of incidence θ. In both cases we 
calculated rise times t1 and t2 in μs for a = 10 km and 100 km. as shown in figure. It is clear 
that variation of rise time with frequency is almost similar for different angle of incidence. 
The rise time t2 is always smaller than t1. Also both rise times for lower thickness (a = 10 km) 
compared to the higher one are larger in the low frequency range, and tends to infinity as 
frequency tends to zero. As we move towards the penetration frequency, rise times for lower 
thickness decreases below that for higher thickness. For a = 10 km, rise time decreases 
gradually as we increase f, i.e. quality of received pulse increases for increase in the 
frequency. But for a = 100 km a minima is clearly visible at f ≈ 0.6fp. Hence, if the ionosphere 
is characterized by the transfer function g2(t) and if the transmitted pulse frequency is close 
to 0.6fp then we have a better reproduction of the pulse at the receiver. Discontinuities in the 
curves are clear as we move close to MUF. This problem arises since the ray theory becomes 
invalid at this limit and we need full wave theory to find out the rise time at that point.       
 

5. CONCLUSION 
 

The propagation path of a plane wave pulse through an isotropic ionosphere and the 
characteristics of a received pulse after reflection have been discussed by using a more 
realistic sech2 electron density profile for the ionosphere. We briefly review the analytic 
solution for transmission distance of the pulse incident obliquely. It is shown that for f <= fp, 
reflection occurs for all θ, but when f > fp reflection will not be found as we move towards the 
normal incidence. No F layer reflection occurs when f << fp. Also as we go beyond the 
penetration frequency fp, the possibility of reflection decreases. As an example: for f = 2fp 
reflection will be possible for a short range of θ (~ 650 to 800). Afterwards, we analyze a 
simple communication problem considering two specific channel transfer function and the 
result shows that smaller rise time gives better reproduction of the signal. Finally, an explicit 
relation of rise time is obtained using the sech2 profile and it is shown that for thin layer, 
quality of received pulse increases with the increase of frequency. But for thick layer better 
reproduction will be possible around 0.6fp. To summarize, for realistic electron concentration 
variation, best suitable frequency for communication is around 0.6fp for any angle of 
incidence. But, as we move towards / beyond penetration frequency, possibility of 
communication is limited for a short range of angle of incidence at the cost of quality 
degradation of the received pulse. The analytic solutions obtained in this paper are of 
importance to characterize transionospheric channel model for communications. 
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