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ABSTRACT: 
The characteristics of pneumatic artificial muscles (PAMs) make them very interesting for the development of 
robotic and prosthesis applications. The McKibben muscle is the most popular and is made commercially 
available by different companies. 
The aim of this research is to acquire as much information about the pneumatic artificial muscles as we can with 
our test-bed that was developed by us and to be able to adopt these muscles as a part of prosthesis. 
This paper presents the set-up constructed, and then describes some mechanical testing results for the pneumatic 
artificial muscles. 
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1. INTRODUCTION 
 
PAMs have different names in literature: pneumatic muscle actuator, fluid actuator, fluid-driven 

actuator, axially actuator, tension actuator, etc. ([1], [2], [3] and [4]). 
The pneumatic artificial muscle consists of rubber tubes and fibers. When the rubber tube is 

inflated with compressed air, the cross-weave sheath experiences lateral expansion, resulting in axial 
contractive force and the change of the end point position of pneumatic muscle. 

The working principle of the pneumatic artificial muscles is well described in literature ([1], [2], 
[5], [6] and [7]). 

Pneumatic muscles have many advantages such as high strength, good power-weight ratio, low 
price, little maintenance needed, great compliance, compactness, inherent safety and usage in rough 
environments ([6], [8]). The most significant problem of PAMs is nonlinearity ([9] and [10]). 

The PAM that was selected as the actuator for our study is the Fluidic Muscle (DMSP-20-200N-RM-RM) 
manufactured by FESTO. According to its specification, maximum contraction over the nominal length is 25-27 %. 

 
2. MATERIALS AND METHODS 

 
A good background of this research can be found in [11], [12] and [13]. 
The experimental set-up (Fig. 1) consists of a slider mechanism. One side of the muscle is fixed 

to a load cell, while the other side is attached to the movable frame. The load cell (7923 type from 
MOM) is a 4 bridge element of strain gauges. It is mounted inline to the PAM on the fixed surface. The 
load cell measures the force exerted by the PAM. The tests are performed by changing the 
displacement of this slider. The linear displacement of the actuator is measured using a LINIMIK MSA 
320 type linear incremental encoder. During each test, frame position, muscle force and applied gauge 
pressure are recorded. 

In the test-bed two fluidic muscles can be mounted. Instead of second PAM a bias spring or an 
external load can be attached with a flexible steel cable, producing the necessary counter force to pull 
the actuator back when it is not activated. 

The air pressure applied to the actuators can be regulated with two adjustable regulator type 
Festo VPPM-6L-L-1-G1/8-0L6H-V1N-S1C1. The proportional pressure regulators (PPRs) are 
controlled by voltage inputs. The main purpose of the PPR is to regulate the pressure entering the 
PAM. To measure the air pressure, two Motorola MPX5999D pressure sensors were plumbed into the 
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pneumatic circuit. A National Instruments Multi-I/O card (NI 6251) reads the signal of force, pressure 
sensors and incremental encoder into the PC. 

National Instruments LabVIEW is a typical example for high level software, capable of 
connecting various kinds of DAQ boards with a PC. We used this program to monitor and collect the 
data imported through the DAQ card. It will also dispatch the control profiles for the PPRs. Fig. 2 
shows the environment in LabVIEW. 
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Figure 1. Experimental set-up for analysis of the pneumatic artificial muscle 

(fixed slider position) 
 

 
Figure 2. Front panel of the LabVIEW program 

 
With the specially constructed testing machine, we are able to measure the static and dynamic 

characteristics of several versions of these pneumatic actuators. 
 

3. EXPERIMENTAL RESULTS 
 

The first experiment was done on the pressure of 5,5 bar. Fig. 3 shows the relation between 
tensile force [N] and position [mm] of this 20 mm diameter and 200 mm length artificial muscle. 

Length of artificial muscle in constant pressure depends on force. This force decreases with 
increasing position of the muscle and the muscle inflates. There is a point (maximum position (50 
mm)) where the volume reaches its maximum value, the length its minimal value (150 mm) and the 
force drops to zero. The characteristic is nonlinear. 

We repeated the previous experiment under different constant pressures (0-5,5 bar). Fig. 4 
shows the experimental results. Tensile force of artificial muscle is under different constant pressures 
a function of muscle length and of air pressure. The force always drops from its highest value at full 
muscle length to zero at full inflation and position. 

Next, we examined the characteristics of PAMs in antagonistic set-up. 
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Figure 3. PAM isobaric force-position characteristic 
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Figure 4. PAM isobaric force-position characteristics 

 

 
Figure 5. Experimental Set-Up For Analysis Of The Pneumatic Artificial Muscles (Antagonistic Configuration) 

 
The antagonistic configuration of the actuators causes the active muscle to have to pull against 

the stiffness of the passive muscle. So, a pair of pneumatic artificial muscle actuators put into 
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antagonism configuration can imitate a biceps-triceps system and emphasize the analogy between this 
artificial muscle and human skeletal muscle. 

In the antagonistic set-up, in the test-bed two muscles were mounted (Fig. 5). The 
characteristics of pneumatic artificial muscles under different constant pressures with antagonistic 
configuration of PAMs are shown in Fig. 6, where xmax means the maximum range of motion (±6-10 
mm). In an antagonistic set-up without external load, position is determined by the ratio of pressures 
in both muscles. 
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Figure 6. PAM’s isobaric force-position characteristics in antagonistic configuration 

 
Also, we mounted the PAMs into shorter places than their initial lengths (Fig. 7). Fig. 8 shows 

how to extend the operating range of pneumatic artificial muscles in antagonistic set-up. 
 

 
Figure 7. Mounting pam’s into shorter places than their initial lengths 
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Figure 8. Extended operation range of PAM’s 
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Many researchers have investigated the precise position control of pneumatic muscles during 
the past several years. Most of them dealt with the control of single or antagonistic pneumatic muscles. 
The positioning of PAMs requires accurate determination of the dynamic model of pneumatic 
actuators. We can accurately predict with our test-bed the nonlinear hysteresis and creep effects that 
were measured. The viscoelastic behaviors contribute to hysteresis and creep in an actuator, and will 
also limit the allowable frequencies of operation. 

[8] reports that the main cause for hysteresis in the McKibben muscle is Coulomb friction 
between the braided mesh shell and the internal bladder. An experiment was made to illustrate the 
hysteresis (Fig. 9). 

The Fig. 10 indicates that the PAM displays significant creep, likely due to it’s highly viscoelastic 
nature. This large amount of creep means that the actuator would need to be warmed up before it 
could be effectively used. 
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Figure 9. Measured hysteresis loop of PAM 
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Figure 10. Measured creep effect of PAM 
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4. CONCLUSIONS AND FUTURE WORK 
 
This paper presented the mechanical structure of our test-bed that is capable of carrying out 

several static and dynamic investigations of PAMs. The results are a study on PAMs that have the 
potential for use in robotic and prosthesis applications. The future work for this project is to show that 
the fluidic muscle can be used as a good approximation of the biological muscle. These muscles seem a 
better choice than present day electric or other drives. 
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