

THE USE OF MDCE ENVIRONMENT FOR PARALLEL
PROCESSING OF STOCHASTIC ALGORITHMS

Martin VESTENICKÝ1), Peter VESTENICKÝ2)

1) University of Žilina, Faculty of Electrical Engineering,

Department of Telecommunications and Multimedia, Žilina, SLOVAKIA
2) University of Žilina, Faculty of Electrical Engineering,

Department of Control and Information Systems, Žilina, SLOVAKIA

ABSTRACT:
This paper deals with basic architectures of computing system for parallel processing of stochastic algorithms. The
architecture client – server, peer – to – peer and their advantages and disadvantages are described in details. In
the next part of paper an application of the MDCE (Matlab Distributed Computing Engine) environment as an
integral part of the Matlab software package from the MathWorks, Inc. is presented. The MDCE has been applied
to optimize selective filters used in telecommunication industry with using of parallel processed evolutionary
algorithm. Results of experiments are discussed from the viewpoint of the parallel processing contribution to
calculation speed.
KEYWORDS:
Parallel processing, evolutionary algorithm, Matlab, population matrix, client – server, peer – to – peer.

1. INTRODUCTION

A high requirement on the computing power is one of the greatest disadvantages of stochastic
algorithms [1, 5, 6, 7]. These requirements are closely linked with the amount of time needed to find a
solution. A possible answer to this problem is the parallel processing of particular calculating
operations. Positive property of the stochastic algorithms is that the majority of calculations can be
processed in parallel. The most suitable operation for parallel processing is the costing of individuals
because the number of individuals in population is relatively high and the costing of one individual is
independent on the costing of remaining individuals. Basically the whole stochastic algorithm can be
executed in parallel with a certain information exchange mechanism about the best achieved solutions,
optimum solution etc. among particular cooperating workstations.

The theoretical limit of the parallel processed algorithm speed up coefficient specifies Amdahl’s
law which is defined by formula (1) if N identical computers are used:

N

F1
F

1
K Z −

+
= (1)

where F is fraction of operations that must be executed in serial only mode (i. e. then 1-F is fraction of
operations that can be parallelized) and N is the number of parallel working computers (processors).

Resulting from formula (1) the coefficient of calculation speed up KZ approaches the value of F-1
for big N so the stochastic algorithm must contain minimum number of serially performed operations.
 For parallel processing of stochastic algorithm a suitable architecture of computing system must
be selected to process particular calculation effectively. It is necessary to take into account the fact that
the separate workstations must inform each other about the results of particular calculations. The
workstations must be interconnected; the simplest way is to utilize the local area network (LAN) which
has some limitations for example:

 The data transfer rate is not infinite – this is limitation for transfer of big data volumes,
 The network delay is not zero – this is limitation for frequent transfer of small data volumes.

These facts must be taken into account when parallel stochastic algorithm is designed especially
the chromosome representation of individual and population matrix dimension must be properly
selected. From the logical topology point of view the following architectures are suitable:

 Client – server architecture,
 Peer – to – peer architecture.

55 Tome VIII (year 2010), Fascicule 2, (ISSN 1584 – 2665)

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 2 (ISSN 1584 – 2665)

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 56

More detailed information about architectures and operating mode of parallel computing
systems can be found in [3, 8].

2. CLIENT – SERVER ARCHITECTURE

The logical topology of the computing system with client – server architecture is presented in

Fig. 1. The computing system contains one server and N clients. The server manages entire computing
system. Its functions are defined in the next list:

 The generation of initial population matrix,
 Splitting of population matrix into particular population submatrices randomly or

deterministically,
 The generation of descendants can also be performed by client stations,
 Sending out the particular population submatrices to the clients for further processing,
 Reception of the new generation population submatrices from the clients and reassembling of the

new generation population matrix,
 Check of the algorithm termination criterion,
 Management of the whole computing system (workstation login, logout, detection of workstation

fail etc.).
The method of working with population matrix and

population submatrices is presented in Fig. 2 and Fig. 3. At the
first step (Fig. 2) the population matrix is randomly or
deterministically split into particular population submatrices
which are sent out to the client stations for processing. At the
second step (Fig. 3) the population submatrices received from
the client stations are reassembled into one unit – population
matrix. The use of random or deterministic method of
population matrix splitting depends on whether or not the

client station generates the new individuals. If the client station generates the new individuals it is
suitable to split the population matrix randomly to prevent early convergence of algorithm.

Population
matrix

Pop. submatrix 1

Pop. submatrix 2

Pop. submatrix 3

Pop. submatrix 4

Pop. submatrix N

Chromosomes
COST

COSTChromosomes

Pop. submatrix 1

Pop. submatrix 2

Pop. submatrix 3

Pop. submatrix 4

Pop. submatrix N

Chromosomes COST

Population matrix

COST
Chromosomes

Figure 2. Splitting of population matrix into

submatrices
Figure 3. Reassembling of population
submatrices into population matrix

The functions of client station are:
 Reception of population submatrix from the manager,
 The generation of descendants – also can be done by the management station,
 Costing of individuals,
 Decision about insertion of individual into the new generation,
 Sending out the population submatrix to the manager.

Described method of working with population matrix requires certain synchronization of
workstations. It is implicitly assumed that the new generation will start after the reception and costing
of the population submatrices from all participating workstations. The use of workstations with equal
computing power is recommended to enable effective work of the whole system. If workstations with
various computing power are used the population matrix must be split unequally to keep the time of
costing process approximately identical. The powerful workstation would process a larger population
submatrix and less powerful ones would process a smaller submatrix.

The work with the population matrix can be partially modified to enable asynchronous mode of
workstation operation but their management would be more difficult.

WS 1 WS 2 WS 3 WS 4 WS N

Manager

TCP connection

Figure 1. Client – server system

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 2 (ISSN 1584 – 2665)

3. PEER – TO – PEER ARCHITECTURE

 The computing system logical topology of peer – to – peer architecture is shown in Fig. 4. The
workstations are logically interconnected by polygonal network. The method of working with
population matrix is presented in Fig. 5. Every workstation keeps its own population matrix and
performs complete stochastic algorithm. Moreover every workstation performs the tasks to control
entire system. These tasks can be defined as:

 To search for other workstations which cooperate on calculations,
 To notify about finding of new workstation,
 To notify that given workstation is leaving the computing system,
 Creation of list with defined number of the most successful solutions,
 Distribution of the most successful solutions list to other workstations,
 Reception of the most successful solutions lists from other workstations,
 To incorporate the received solutions in accordance with selected criterions into own population,
 To check the algorithm termination criterion,
 To notify the other workstations about solution finding.

For effective work it is suitable to split the
space of solutions to the parts which are
proportional to the computational power of

particular
workstations. It can
be done by proper
selection of
population size and
boundary of
solutions. All these
parameters would
be dynamically
scalable. The
purpose of these
precautions is to
prevent that the
workstations search the same space of solutions. It is essentially
imitation of organism evolution in various isolated areas.

Pop. submatrix 1 Pop. submatrix 2 Pop. submatrix N

WS 1 WS 2 WS N

Vygenerovanie a
ohodnotenie
0. generácie

Kritérium
výberu ?

Štart

Vygenerovanie a
ohodnotenie

potomka

Kritérium
ukončenia ?

Nezaradenie
potomka do
populácie

Zaradenie
potomka do
populácie

Koniec

+

-

-
+

Vygenerovanie a
ohodnotenie
0. generácie

Kritérium
výberu ?

Štart

Vygenerovanie a
ohodnotenie

potomka

Kritérium
ukončenia ?

Nezaradenie
potomka do
populácie

Zaradenie
potomka do
populácie

Koniec

+

-

-
+

Vygenerovanie a
ohodnotenie
0. generácie

Kritérium
výberu ?

Štart

Vygenerovanie a
ohodnotenie

potomka

Kritérium
ukončenia ?

Nezaradenie
potomka do
populácie

Zaradenie
potomka do
populácie

Koniec

+

-

-
+

BEST 1 BEST 2 BEST N

Figure 5. Processing of stochastic algorithm by

peer – to – peer architecture

WS N

WS 4

WS 1

WS 2

WS 3

TCP connection

Figure 4. Peer – to – peer
architecture of computing

system

4. IMPLEMENTATION IN THE MATLAB ENVIRONMENT

The Matlab software package contains as its own integral part the Matlab Distributed

Computing Toolbox which creates environment intended for parallel processing of computational
tasks. Logical architecture of MDCE environment is presented in Fig. 6. The MDCE contains three
basic parts:

 The client which is created by running MATLAB application. The client performs given algorithm,
communicates with the task manager to transfer the computing tasks and to receipt the results.

 The task manager is a software entity which manages the workers and communicates with the
client, transfers the received tasks from the client to workers, collects the results of the calculations
from workers and sends them to the client.

 The worker is a software entity which performs the tasks received from the manager and sends
back the results. Every worker must have defined the superior manager.

Detailed information about MDCE environment configuration
can be found in [2].

Resulting from Fig. 6 and from previous text the MDCE
environment allows the implementation of parallel working
evolutionary algorithm based on the client – server topology.
Basically the MDCE environment can be used to evaluate N identical
functions for N files of various arguments. This fact can be preferably
used at parallel processing of stochastic algorithm which has been
partially modified. The changes concern about parallel costing of

individuals and minimization of communication among particular entities of the MDCE environment.
Simplified situation is explained in the flowchart in Fig. 7.

Client Task
manager

Worker 1

Worker 2

Worker 3

Worker N

Figure 6. Logical architecture
of the MDCE environment

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 57

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 2 (ISSN 1584 – 2665)

At the start the zero generation individuals are generated which are stored in
the population matrix POP. In the next step the first generation individuals are
generated by corresponding operator and they are stored in the population matrix
POPtmp. The matrix POPtmp is then split into N identical population submatrices
SUBPOPtmp which serve as input arguments for N parallel evaluated instances of
cost function. The result of every evaluation is a cost vector the algorithm is waiting
for. It is necessary to keep the cost assignment of individuals. This is ensured by
correct sequencing of cost vectors. In the next step the costs are compared with
costs of individuals from the matrix POP and the individuals with better costs will
replace the individuals from POP. At the same time the best individual is found.
Then the algorithm end is checked and potential new generation or end of
algorithm follow.

Start

Init(POP)

END

G > Gmax

G = G + 1

G = 1, Cbest = inf

+

-

Generate next
POPtmp

Divide POPtmp into
N x SUBPOPtmp

Send N x
SUBPOPtmp

to task manager

Wait until
evaluation is

finished

COST vectors
reception

Compare
POP a POPtmp ,

insert better
individuals into POP

Figure 7.

Parallelized
differential

evolutionary
algorithm

The Fig. 8 presents the utilization of various MDCE entities at processing of
stochastic algorithm where data flows and roles of entities are shown. Exactly the
possibility of parallel evaluation of cost functions for different parameters is used.
The cost function is adapted to process the solutions group consisted of population
submatrix and to return the cost vector whereby the correct cost assignment to the
individuals is ensured. This solution has been selected to reduce the network delay
influence and losses of time caused by entities of the MDCE environment (start of
calculation, end of calculation, acquisition of results etc.). The splitting of
population matrix into submatrices is much more advantageous as sending out the
individuals to evaluate one after another. The whole computing system works
synchronously i. e. the cost vectors are sent by manager to the client as late as the
evaluation of given population submatrices set are completed by all workers. The
MDCE can run asynchronously, too but it would require the changes of population
matrix processing algorithm.

Client Task
manager

Worker 1

Worker 2

Worker 3

Worker N

Vygenerovanie a
ohodnotenie
0 . generácie

Krit érium
výberu ?

Štart

Vygenerovanie a
ohodnoteni e

potomka

Kritérium
ukončenia ?

Nezaradenie
potomka do
populácie

Zaradenie
potomka do
populácie

Koniec

+ -

-
+

Cost()

Population matrix
Population submatrix
COST vector

Cost()

Cost()

Cost()

SwitchClient

PC 1

PC 2
Worker 1

PC 3
Worker 2

PC 4
Worker 3

PC 9
Worker 8

PC 8
Worker 7

PC 7
Worker 6

PC 5
Worker 4

PC 6
Worker 5

Task Manager

100 Mbit.s-1 ETHERNET
Figure 8. Utilization of MDCE entities to run the

differential evolutionary algorithm
Figure 9. Hardware of computing system

5. APPLICATION OF MDCE IN THE CIRCUIT THEORY

For experimental verification of designed method of stochastic algorithm parallelization the

computing system consisting of nine identical computers has been built. The configuration of
hardware and placement of MDCE entities are shown in the Fig. 9. The computers have been
interconnected by a standard Fast Ethernet network (faster network has not been available). The used
computers contained CPU Intel Celeron 2.4 GHz, 512 MB RAM and Windows XP Home Edition. Both
the client and the task manager have been run on the computer PC 1 to reduce the number of
computers in the system.

The experimental verification of parallel processing in the MDCE environment has been
performed by application of the differential evolutionary algorithm for solving of various optimization
problems. In the experiments no. 1, 2 and 3 the elements of biquadratic circuit with given transfer
function have been found whereby various degrees of used operational amplifier nonlinearity,
optimization of dynamic relations in the circuit structure and minimization of minimum and
maximum value ratio of used circuit elements have been taken into account. In the experiment no. 4
the filter for zero intermediate frequency receiver has been optimized to minimize bit error rate at data
transfer. All the optimizations are in detail described in [2]. The basic algorithm of differential

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 58

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 2 (ISSN 1584 – 2665)

evolution [1] has been partially adapted for parallel running in accordance with the flowchart in Fig. 7.
The control constants of algorithm have been set as it is given in the table 1.

Table 1. Setting of control constants

Experiment 1 2 3 4
Number of unknown quantities D 9 9 9 14

Number of generations Gmax 300 300 300 100
Number of population individuals NP 900 900 900 280

Crossover ratio CR 0.9 0.9 0.9 0.9
Weighting coefficient of differential mutation 1 F1 0.5 0.5 0.5 0.5
Weighting coefficient of differential mutation 2 F2 0.5 0.5 0.5 0.5

Described optimization tasks have been run on one, two, four and eight parallel working

computers respectively. The results of these experiments are described in the tables 2 up to 5. Every
table contains absolute time duration of experiment t, normalized time duration of experiment with
respect of time duration on one computer tnorm (in %), speed up coefficient KZ and fraction of
operations that must be executed in serial only mode F. The tables are sorted by cost function
complexity.

Table 2. Achieved times in experiment 1 Table 4. Achieved times in experiment 3
N 1 2 4 8

t [s] 736 1065 1750 3444
tnorm [%] 100 144.70 237.77 467.93

Kz 1 0.691 0.421 0.214
F 1 1.894 2.834 5.198

N 1 2 4 8
t [s] 30574 16110 9115 6169

tnorm [%] 100 52.69 29.81 20.18
Kz 1 1.898 3.354 4.956
F 1 0.054 0.064 0.088

Table 3. Achieved times in experiment 2 Table 5. Achieved times in experiment 4

N 1 2 4 8
t [s] 17353 9479 5749 4571

tnorm [%] 100 54.62 33.13 26.34
Kz 1 1.831 3.018 3.796
F 1 0.092 0.108 0.158

N 1 2 4 8
t [s] 103364 53558 29203 16270

tnorm [%] 100 51.81 28.25 15.74
Kz 1 1.930 3.539 6.353
F 1 0.036 0.037 0.038

6. CONCLUSION

Some facts can be formulated on the base of results from the previous tables: fraction of

operations that must be executed in serial only mode (F) is not constant but increases when the
number of parallel working computers increases. This phenomenon is caused by these factors: the
number of needed operations to split the population matrix increases (performed by client), data
transfer among MDCE entities increases and the number of needed operations to assign the costs to
the individuals increases (performed by client). If the computing requirements of cost function
increase the speed up coefficient KZ also increases except of the experiment no. 1 when the time
consumption increases despite the fact that the number of computers increases. It is in conflict with
formula (1). Analyzing this phenomenon it is caused by some reasons: if the N is big the management
requirements of entire system are being increased, time delays increase because the task manager is
able to communicate on physical layer only with one worker at given moment, the number of
operations needed to split the population matrix increases and especially if the cost function is simple
in comparison with the one in experiments 2, 3, 4 the total management time becomes dominant.

The maximum values of speed up coefficient KZ cannot be estimated because F is not constant
but it can be assumed that KZ will start to decrease if number of cooperating computers increases. In
described experiments this phenomenon has not been verified because only 9 computers were
available. The parallelization effect dominates only when the calculation of the cost function consumes
more computing power.

ACKNOWLEDGEMENT
This work has been supported by the Grant Agency VEGA of the Slovak Republic, grant No. 1/0023/08
"Theoretical apparatus for risk analysis and risk evaluation of transport telematic systems"

REFERENCES
[1] CORNE, D., DORIGO, M., GLOVER, F.: New Ideas in Optimization. McGraw-Hill, London 1999. ISBN

001-709506-5

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 59

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 2 (ISSN 1584 – 2665)

[2] VESTENICKÝ, M.: The Use of Evolutionary Algorithms in Selective Systems Synthesis for
Communication Systems. Dissertation thesis, University of Žilina, Faculty of Electrical Engineering,
2007 (in Slovak)

[3] JELŠINA, M.: Architectures of Computing Systems. ELFA, Košice, 2002. ISBN 80-89066-40-2 (in
Slovak)

[4] The MathWorks, Inc.: Parallel Computing Toolbox™ 4 User’s Guide. [online], URL
<http://www.mathworks.com/access/helpdesk/help/pdf_doc/distcomp/distcomp.pdf>

[5] LOHN, J. D., LINDEN, D. S., HORNBY, G. S., KRAUS, W. F., RODRÍGUEZ-ARROYO, A., SEUFERT, S.:
Evolutionary Design of an X-Band Antenna for NASA's Space Technology 5 Mission. Proceeding of 2004
IEEE Antenna and Propagation Society International Symposium and USNC/URSI National Radio
Science Meeting, Vol. 3, pp. 2313-2316, 2004. ISBN 0-7803-8302-8

[6] LOHN, J. D., COLOMBANO, S. P.: A Circuit Representation Technique for Automated Circuit Design.
IEEE Transactions on Evolutionary Computation, Vol. 3, no. 3, 1999, pp. 205-219. ISSN 1089-778X

[7] KROKAVEC, D., FILASOVÁ, A.: Optimal Stochastic Systems. 2nd edition. Elfa, Košice, 2002. ISBN 80-
89066-52-6 (in Slovak)

[8] HOTTMAR, V.: Network Model of The Processor System. Híradástechnika, info - communications -
technology, vol. 60, no. 12/,2005, pp. 28-31. HU ISSN 0018 - 2008

ANNALS OF FACULTY ENGINEERING HUNEDOARA
– INTERNATIONAL JOURNAL OF ENGINEERING

copyright © University Politehnica Timisoara,
Faculty of Engineering Hunedoara,
5, Revolutiei, 331128, Hunedoara,

ROMANIA
http://annals.fih.upt.ro

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 60

	THE USE OF MDCE ENVIRONMENT FOR PARALLEL PROCESSING OF STOCHASTIC ALGORITHMS

