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ABSTRACT 
In this article, the outcome of a study conducted to evaluate the effectiveness of a system utilized for military 
aircraft inventory forecasting and management is presented. The research objective was on the precision of the 
current system being used for inventory management. To conduct the study, both existing and proposed systems 
were compared by simulating stock level targets. The study finds that generic inventory forecasting systems do 
not deliver the level of precision required for specialist inventory forecasting.  
Keywords: Inventory, forecasting 

 
 
 

1. INTRODUCTION 
 
The MK/MKa Chinook helicopter is one of the most durable and versatile utility military 

aircrafts in operation by the United Kingdom Royal Air Force (RAF). The helicopter’s haul capacity is 
over 10t.  Maintenance and support of the RAF MK/MKa Chinook helicopter fleet is currently provided 
by Boeing’s United Kingdom through Life Customer Support programme (UKTLCS).   

The major challenge faced by UKTLCS is on ensuring that it is able to deliver in real time, spare 
component parts to the four major Boeing sites used for the Chinook maintenance. To facilitate this 
process, UKTLCS uses an advanced inventory forecasting system called Service Planning and 
Optimization System (SPO), which has been developed by the Philadelphia, based software developing 
firm MCA solutions. 
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Fig.  1. Chinook Component Demand (UKTLCS) 

UKTLCS faces two major challenges in its support of the MK/MKa Chinook helicopter support 
programme. The first is to ensure that it ensures that spare components are delivered on time at the 
right maintenance site. Secondly, the programme team faces a challenge of ensuring that its supply 
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chain is optimized. Both objectives have to be met within the context of irregular demand patterns 
demonstrated by the spare components [1, 2].  There are however advantages of optimizing its supply 
chain. In the first place, Boeing will be able to rationalize floor space, and in the process reduce 
inventory and unnecessary storage cost (which will eventually be converted into savings for the Air 
force). Secondly, optimization of its supply chain is likely to reduce overall maintenance duration. In 
fig. 1, we show the irregular nature of the typical demand pattern of spare components of the MK/MKa 
Chinook helicopter. In Table 1, on the other hand, we show for example the shows the monthly 
demand for the first 10 spare components we identified. The data is representative of component 
demand over a period of 29 months. 
 

Table 1. Monthly demand for the first 10 spare components 
Item Year 1 Year 2 Year 3 Total 

Spare 
Demand

Item 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 0 0 0 7
Item 2 0 1 0 0 0 1 1 2 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 10
Item 3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 0 2 0 0 0 0 0 0 0 0 13
Item 4 1 1 1 1 3 1 1 0 4 1 1 0 2 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 25
Item 5 1 7 2 0 4 0 0 0 2 2 1 5 4 3 1 3 6 0 0 1 1 3 2 2 0 3 0 0 0 53
Item 6 0 1 1 0 2 1 0 1 1 3 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 16
Item 7 1 0 0 0 0 0 0 1 0 0 0 0 1 0 3 2 1 0 1 1 1 2 0 0 0 1 0 1 0 16
Item 8 2 2 0 3 2 2 1 3 5 0 0 2 0 0 1 0 1 2 0 0 1 1 0 1 2 1 0 0 0 32
Item 9 1 0 2 1 1 2 1 3 3 0 0 1 0 1 3 0 3 0 4 2 7 1 2 2 1 2 0 8 0 51
Item 10 2 1 1 0 3 2 3 0 0 0 3 3 0 1 2 1 0 1 0 1 0 0 0 1 1 1 1 1 0 29
Item 11 1 6 1 0 9 1 1 2 1 1 0 5 1 1 1 2 5 2 1 0 5 1 1 0 1 0 5 2 3 59
Item 12 0 3 4 5 7 3 0 3 1 1 0 4 2 2 2 1 2 4 1 2 3 0 0 5 1 5 2 4 3 70
Item 13 2 0 0 2 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 1 0 3 1 0 0 0 0 0 0 13
Item 14 0 2 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 6
Item 15 2 0 0 0 4 2 4 0 0 0 0 0 0 3 1 0 2 1 0 0 1 0 0 0 0 2 1 0 0 23
Item 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 2 6
Item 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 1 1 6
Item 18 1 1 1 1 1 0 1 0 3 3 6 0 0 0 1 3 2 0 6 0 1 1 2 3 0 5 1 1 0 44
Item 19 1 0 0 1 0 0 0 0 0 0 1 2 0 4 0 0 1 0 6 4 0 0 1 0 1 1 3 3 2 31
Item 20 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 7  

 
2. METHODOLOGY 
 
Our study was conducted with real data obtained from Boeing (approval granted by the UK 

Ministry of Defense). The MK/MKa Chinook helicopter is a very advanced aircraft. It consists of over 
13,000 spare components, thus presenting a major challenge to maintain. 

 

 
Fig.  2 Screen shot of model parameter forecast 

 
In line with earlier studies [3, 4, 5], the study commenced with the collation of all spare 

component demand data (of the 13,000 components) into an excel spreadsheet. In order to obtain 
historical data, which was not made available by Boeing, we created and ran a VBA macro [6] against 
the spare component dataset which we had obtained from Boeing. We then began the process of 
identifying what constituted ‘critical’ components of the aircraft. We subsequently identified a total of 
92 spare components as critical based on three criteria. In the first place, that once damaged, would 
negatively impact on the ability of the aircraft to perform its primary military role, and secondly that 
once this component was removed from the aircraft, it was un-repairable and therefore would need to 
be replaced. The final criteria related to cost. These were components that were the most expensive to 
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repair. From the list of spare components, we identified a total of 40 components that represented 
more than $200 million in terms of expenditure.  Using VBA and excel an automated method was 
created to model parameter forecasts on a large scale using a very small hold out period. A screen shot 
is shown in fig. 2  

Once the spare components were identified, we now commenced with the allocation of unique 
part numbers to each component. We used networks to achieve this. The process meant that each 
component that could be replaced was allocated with an LR (Line Replaceable) number, while spare 
components which were designated as only service replaceable, we designated with an SR (Service 
Replaceable) number.  
 

3. PRELIMINARY RESULTS 
 
This stage of our study involved the performance of a diagnostic test on the SPO system which is 

currently being used by Boeing’s UKTLCS’s team for inventory planning and forecasting. We created a 
modeling macro using VBA to facilitate key parameter processing of SPO’s performance in inventory 
planning and forecasting. This was conducted against live results which are shown in Table 2. We 
acknowledge the limitation of this approach as MCA’s formula for smoothing forecast remains 
proprietary and therefore is not in the public domain. As a result, based on our interpretation of the 
SPO user guide which claims that MCA smoothing is a variation of SES, we have made assumptions on 
SPO’s configuration. We especially note that periods of zero (o) demand appear not to update the value 
of forecast. Our interpretation is that it is likely that MCA Smoothing utilizes [2] method for 
forecasting intermittent. This methodology assumes that demand sizes are primarily distributed 
identically while at the same time being independent. According to scholars [7, 8], biases with this 
model may occur on occasions when demand size estimators (Zt) and interval of demand (pt) are 
independent then: 
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Overall, we 
observed conflicting 
outcomes with the 
demand patterns. For 
example, while spare 
components such as 
Item 88 (Table 2) 
appeared inaccuracies 
in demand with a 
series of zero (0) 
demands being followed by a demand of 157 components, which again is followed by a subsequent zero 
(0) demand, Items 29 and 33 (Table 2) both indicated similar demand patterns. On the other hand, 
good performing items appeared to show extremely low values which were under 1.5. In our opinion, 

such values is indicative of the 
positive aspects of Croston [2] 
which provides for more 
superior in conditions that do 
not achieve and intermittence 
of 1.25. 

It is perhaps important 
that we do highlight that in 
order to explore how well or 
poor performing the SPO 
forecast was, a selection of the 
poorest performing (Table 3 ), 
and exceeding (Tab. 4) items 
was conducted. 

Table. 2 Performance of Existing Forecast System 

2.0510.29125.92-10.29-514.58%-61.7573.75126Item 88

1.440.720.57-0.66-394.35%-3.944.9416Item 53

0.711.111.41-0.91-182.42%-5.478.4736Item 33

1.140.580.35-0.46-274.50%-2.753.7516Item 29

0.751.834.11-1.29-152.00%-16.7227.721113Item 13

USTATMAEMSEMEPCT 
ERROR

TOTAL
ERROR

F'CAST 
DEMAND

DEMANOBSITEM

2.0510.29125.92-10.29-514.58%-61.7573.75126Item 88

1.440.720.57-0.66-394.35%-3.944.9416Item 53

0.711.111.41-0.91-182.42%-5.478.4736Item 33

1.140.580.35-0.46-274.50%-2.753.7516Item 29

0.751.834.11-1.29-152.00%-16.7227.721113Item 13

USTATMAEMSEMEPCT 
ERROR

TOTAL
ERROR

F'CAST 
DEMAND

DEMANOBSITEM

 

Table. 3 Range of worst performing items 

2.901.27190.6920.4566

1.070.9125.22226.9362

1.321.3373.99163.7654

3.631.80210.8330.45Odiham13

1.530.84101.1341.1463

1.532.47102.30111.7957

1.932.29141.6071.0745

2.421.23171.0330.72Fleetlands29

2.424.521729.7015711.41Almondbank88

Demand 
Interval

SkewZero 
Freq

Standard.
Deviation

HighMeanLocationItem

2.901.27190.6920.4566

1.070.9125.22226.9362

1.321.3373.99163.7654

3.631.80210.8330.45Odiham13

1.530.84101.1341.1463

1.532.47102.30111.7957

1.932.29141.6071.0745

2.421.23171.0330.72Fleetlands29

2.424.521729.7015711.41Almondbank88

Demand 
Interval

SkewZero 
Freq

Standard.
Deviation

HighMeanLocationItem

Site A

Site B

Site C

 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL 
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 2 (ISSN 1584 – 2665) 

 
 

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 92 

Based on an intermittence 
of 1.25.(see Croston [2]),  we 
observe that the worst 
performing items show 
similarities while the items with 
exceeding performance appeared 
to exhibit no deficiencies (in 
comparison with the worst 
performing items). We infer that 
this implies that the scale of the 
average demand interval does 
have an influence on the forecast 
performance of SPO. The final 

aspect of the test involved comparing two separate α values of the 92 components using SES. It will be 
recalled that we had earlier made assumptions based on our understanding of the SPO user guide that 
MCA smoothing represented a variation of SES. Our adoption of this approach was also heavily 
influenced by previous work [5], which in particular highlights critical reasons why demand and 
inventory forecast of combat spare components for helicopters are best undertaken with exponential 
smoothing models. In this case, we found that when the parameter values were reduced from 0.1 to 
0.01, there was an associated precision decrease in MSE (In) values from 69 to 23 and MSE(Out) 
values from 56 to 36. Overall, the our evaluation appears to suggest that much lower MCA smoothing 
values of 0.01 have negatively impacted on the precision of UKTLC’s inventory forecasting 
 

4. FINAL RESULTS 
 
Having completed the evaluation of the SPO system, the next stage of our study now commenced 

with the development of an improved forecasting model. The objective was to develop a model which 
will improve on the SPO model with a view to enhance applicability to the by UKTLCS programme.  
Based on requirements presented by UKTLCS, we sought to develop a model that (i) allowed for choice 
in forecast periods, (ii), was able to support forecasting over any time series that exceeded a year and 
at the same time delivered forecast capability over a single time series and (iii) allowed for Forecast 
assessment against a selection of statistics of fit. 

Development of the model in normal circumstances would be primarily undertaken using SAS 
High Performance Forecasting (SAS/HPF) which provides an automatic means of generating 
substantial quantities of forecast which are reliable. However we were unable to utilise this software 
because of licensing and UK importation problems. As a result, we instead utilised VBA and excel to 
create an appropriate model which is shown in fig. 3. 

‘Places Monthly Demand into SES Model    

‘Increments Results into Data Table

For Month_Demand = 1 To 29

Sheets("SES").Range("C" & Month_Demand + 6).Value = Sheets("Demand_Data").Range("H" & Item_Num + 
1).Offset(0, Month_Demand).Value

Next Month_Demand

.Range("A" & Result_Cell).Value = Sheets("Demand_Data").Range("A" & Item_Num + 1).Value

.Range("B" & Result_Cell + 3).Value = "Difference"

.Range("B" & Result_Cell).Value = "Actual"

.Range("B" & Result_Cell + 1).Value = .Range("Compare1").Value

.Range("B" & Result_Cell + 2).Value = .Range("Compare2").Value

Sheets("SES").Range("AlphaSES").Value = .Range("Compare1").Value
.Range("C" & Result_Cell + 1).Value = Sheets("SES").Range("MSE_IN").Value
.Range("D" & Result_Cell + 1).Value = Sheets("SES").Range("MSE_OUT").Value
.Range("E" & Result_Cell + 1).Value = Sheets("SES").Range("Forecast").Value
.Range("AL" & Item_Num + 7).Value = Sheets("SES").Range("Forecast").Value

For Result_Demand = 1 To 29

.Range("F" & Result_Cell).Offset(0, Result_Demand) = Sheets("SES").Range("C" & Result_Demand + 
6).Value
.Range("F" & Result_Cell + 1).Offset(0, Result_Demand) = Sheets("SES").Range("D" & Result_Demand + 
6).Value

Next Result_Demand

Sheets("SES").Range("AlphaSES").Value = .Range("Compare2").Value
.Range("C" & Result_Cell + 2).Value = Sheets("SES").Range("MSE_IN").Value
.Range("D" & Result_Cell + 2).Value = Sheets("SES").Range("MSE_OUT").Value
.Range("E" & Result_Cell + 2).Value = Sheets("SES").Range("Forecast").Value
.Range("AM" & Item_Num + 7).Value = Sheets("SES").Range("Forecast").Value

 
Fig.  3 Selected codes from the VBA model 

Table 4. Range of exceeding performing items 

1.041.3517.22277.9367

4.142.77220.6630.3144

2.901.50190.9530.59Site C24

1.070.34212.794018.0389

1.450.9391.7261.7972

3.831.73170.6520.3549

1.610.83111.0431.00Site A10

Demand 
Interval

SkewZero 
Frequency

Standard 
Deviation

HighMeanLocationItem
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4.142.77220.6630.3144

2.901.50190.9530.59Site C24

1.070.34212.794018.0389

1.450.9391.7261.7972

3.831.73170.6520.3549

1.610.83111.0431.00Site A10

Demand 
Interval

SkewZero 
Frequency

Standard 
Deviation

HighMeanLocationItem

 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL 
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 2 (ISSN 1584 – 2665) 

 
 

The model was run with parameters which were both non optimized and optimized. We note 
however that studies [9] are yet to support the notion that adaptive models are likely to deliver more 
accurate forecast.  We ran the optimized and non optimized parameter levels at a level of default of 0.1 
which in most cases is recommended.  In tab. 6, we show the optimized result, while in tab. 7, we show 
the non- optimized results which show the most appropriate model based on a parameter value of 0.1. 
This is based on generic values of forecasting value. We must however note that due to the criticality of 
the MK/MKa Chinook helicopter role in the RAF, Boeing’s management maintains the position that 
spare components forecasting may be exceeded rather than underestimated. 
 

Table 6.  Optimised parameter estimations 
Forecast Type Observe Av. Demand Av. Theil Av. MAPE Av. Zero 

Naïve 5 7.20 - 3.49% 24.80 
SES 4 22.25 0.858 3.63% 15.50 
LES 1 12.00 0.791 2.98% 19.00 

MA(3) 1 29.00 0.661 3.86% 14.00 
MA(6) 2 11.00 0.887 5.94% 20.50 
MA(9) 3 154.33 0.849 3.95% 4.33 
MA(12) 29 30.24 0.950 7.33% 13.55 

Croston's 8 144.88 0.650 3.41% 10.25 
SBA Croston's 35 126.23 0.815 4.43% 15.06 

Modified Croston's 4 39.50 0.815 3.88% 12.00 
HW Additive 0 - - - - 

HW Multiplicative 0 - - - - 
 

Table 7. Non-optimised parameter estimations 
Forecast Type Observe Av. Demand Av. Theil Av. MAPE Av. Zero 

Naïve 0 - - - - 
SES 1 12.00 0.831 3.45% 19.00 
LES 12 238.50 0.855 3.57% 11.08 

MA(3) 2 123.00 0.763 2.91% 6.50 
MA(6) 6 12.00 0.861 5.04% 20.17 
MA(9) 4 117.50 0.866 4.49% 8.75 
MA(12) 42 26.78 1.008 8.84% 14.17 

Croston's 0 - - - - 
SBA Croston's 0 - - - - 

Modified Croston's 3 119.33 0.660 3.40% 8.00 
HW Additive 14 113.64 0.751 4.25% 14.07 

HW Multiplicative 8 67.88 0.841 4.97% 15.13 
 

5. CONCLUSIONS 
 
We find on graphical examination of both the optimized (fig. 4) and non-optimized (fig. 5) 

forecast appear more precise in their forecasting of the current system being used for inventory 
management.  When compared for one of the specified items which is shown in tab. 8, we observe that 
due to differences in forecast projections, the tools should best be optimized. Once the optimization is 
conducted, we immediately observe that the SBA model provides the most precise forecast. 

Comparison of Forecast Methods - Optimised Parameters
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Fig. 4 Optimised Forecast 
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Comparison of Forecast Methods - Non - Optimised Parameters
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Fig. 4 Non-optimized Forecast 

 
The findings suggest that in its present state, the SPO system may need to be enhanced in order 

to help the UKTLCS effectively conduct its operations. To effectively enhance SPO will require among 
others, incorporating more dynamic functionalities into its repertoire.  
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