,»! ‘Faculty)’

nglneerlng
g Hunednara - 4
,d; .:.. = terndtl“:{lldi ": ;n :
B rlel Iss-' 1584 2873 nl’ Em @ i e i I g5 Eelamic

ERROR HANDLING AND MESSAGES
WITH APPLICATION SERVER ABAP

1. Ana Daniela CRISTEA, 2 Adela Diana BERDIE

L. NWCON Technology Consulting GmbH, GERMANY
2.University of Timisoara , Faculty of Engineering Hunedoara, ROMANIA

ABSTRACT

Application Server ABAP is an integrated part of the application platform within SAP NetWeaver. In
this paper we will present the tools and concepts we can use to develop solid ABAP based applications
that deal with the error and problem situations occurring in our programs. We catch exceptions and
describe it for the end user. We use client-side validation and server-side validation to inform the user
about the program status and exceptions occur. ABAP offers us full support to do that through
exception classes, message classes, assistance classes, a special Hook method in Web Dynpro ABAP, a
special control structure for catching exceptions and more.

1. INTRODUCTION

SAP NetWeaver is an infrastructure software that supports the integration and development of
heterogeneous system landscapes as they are typically found in companies today [1].

Application platform of the SAP NetWeaver integration platform has two stacks: ABAP stack and
Java stack or Application Server ABAP and Application Server Java with two programming interfaces
ABAP and respective Java.

Application Server ABAP (AS ABAP) offers us through ABAP language many possibilities to
handle the exceptions that occurs in our applications, offers us tools to develop robust programs. A
good user interface catches exceptions and describes for the user the errors that occur.

One of the key quality criteria for software is the robustness of a program. It should be able to
deal with the situation and should not crash [2]. In ABAP we have classical exception handling and
class based exception handling. The SAP documentation [3] recommends us to use class based
exception handling where every exception

ROOT class derives directly or indirectly from the

CX_ROQT super-class.
[| To structure possible exceptions we
CX_STATIC_CHECK CX_DYNAMIC_CHECK X No_CHECK have three abstract exception classes that

derive from CX_ROOT super-class. Fig. 1
Fig. 1 The tree of exception classes in ABAP shows the exception classes relationship [4].
We can handle an exception in an ABAP
programme with TRY - ENDTRY control structure. Fig. 2 shows an example of catching and handling
exceptions.

Report ¥TRY_ENDTRY Active

T P ST e o OF De_net, e,
56| DD GNeD TS GO B SerL TR, (e,

EF s TR Corie o

e

20| Emoser-sEEEE

e o & D

25 e

zs SELECT mandant macricol mume datan ex_promovate TRY

27 FROM wtb_= "

zs INTS TABLE [try blnck]

2o TET, e _

5o nreeTs o B MESTONING <fe_yrh_scudencs -

= WRITE:S Te ; [CATCH cx_class? cx_class2 ...
o5 a :

33 [INTQ oref].
20

35 Bl i e SNSRI [Catch leCk]]

25 STEREER. |

5o 7 BEs @ O

3= RATSE EXCEPTION TYPE zox_exception ob:r

= e

oo CCHnm, O EISE PSS FOECS e OB, HEE [CLEANUP [INTO oref].

aa e o

22 Enpzr. [cleanup_block]]

43 CATCH =cx_exception otr INTO oref. =

aa MESEAGE aret TYPE L. . ENDTRY.

a5 ENDTERY . '

Fig. 2 TRY-ENDTRY structure example

32 Tome VIII (year 2010), Fascicule 3, (ISSN 1584 — 2673)

- amE-Emam d
i |[]:.ll n(‘ll _1=L ANNALS OF FACULTY ENGINEERING HUNEDOARA — INTERNATIONAL JOURNAL

OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 — 2673)
nc ulty Engineering I.Ilnn lanal

The messages that we can use in ABAP language are “A” termination message, “E” error
message, “I” information message, “S” status message, “W” warning message ,” X “ exit message and
define how the ABAP runtime should process the message [5].

When an exception is raised using RAISE EXCEPTION, the runtime environment searches for a
handler. Once a handler is found, the control flow processes the code of the handler before continuing.
If no handler can be found, the program ends with a runtime error.

We can use catch CX_ROOT to catch all errors that occurs.

2. THE STUDY

2.1 WORKING WITH EXCEPTION CLASSES AND TEXTS FOR XCEPTIONS

Each exception has assigned a text that describes the exception and can be for example Online
Text Repository (OTR) text or text from a message class.

OTR is a central place for texts that offers us tools for its processing and administration. The
texts that are stored here can contain maximum 255 characters [6].

We can create our own exception classes as global classes with Class Builder or as local classes in
our programs. Some of the advantages of using class-based exception handling are [7]:

+ Object-oriented concept of inheritance

+ Exception classes have integration with ABAP message concept
4+ Exception class can hold many different types of exceptions

Function module VFM_WITH_EXCEPTION_CLASS Active

Aftributes Import Export Changing Tables Exreplions

data oref type ref to yox_exception_class_otrtxt.
o try.
select *
from yripd
into table exp_yripd
where idprod = in_idprod.
= if sy-subrec <> 0.
raise exeeption type vex exception class_otrtxt
exporting
textid = yox_exeeption _class_oTrtXt=oyex exesption txt
id = in_idprod.
endif.
catch yox_exception _class_otrtxt inco oref.
message oref type display like
endrry.
endfunction.

Fig. 3 Exception class and Function Module

Class Interface YCX_EXCEPTION_CLASS_OTRTXET Implemented / Active

Fropetties Interfaces Friends Aftributes hethods

Long Text I

0 [()

|Excepnon D [Tent

X Ao
WO _ XCEPTIDN CLASE_OTRTXT
YOX_EXCERTION_TXT

An exception occurred
Action not suppored!
The id &id& don't existl

VCX_EXCEPTION_CLASS_OTRTXT Implemented

Friends ﬂimmﬂ Texts Metho

Class Interface

Properies Interfaces

|associated Type]

Type
Type
Type Re
Type
Type
Type
Type

SOTR_CONG
SOTR_CONC
CX_ROOT
S3IBOERRID
SOTR_GONG
SOTR_CONG
¥TIFD-IDFROD

Consta. Publ
Fubl..
Fubl
Fubl
Fubl
Fubl
Fubl

TEXTID

PREWIOUS

KERMEL_ERRID
VCX_EXCEPTIOM_TXT
W¥CX_EXCEPTIOM_CLASS ..
D Instanc

Fig. 4 The structure of
YCX_EXCEPTION_CLASS OTRTXT

Instanc..
Instanc
Instanc
Consta
Consta

Clags Interface YUK _EXCERTION_CLASS_MEGTXT

Properties ‘ﬁﬁw Friends
B EE

Interface

IF_MEGERGE
IF_SERTALIZABLE_DBJECT
IF_T100_MESSAGE

Fig. 5 Exception class with message class

Implanentad] Active

Aftributes Texts hethods =]

F M. |Description
Interface for Accessing Texts from
Serializable Object

" [Interface for Accessing T100 Texts

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

A. Exception class with OTR text

When we create an exception class in ABAP
Workbench we can chose if this is with message
class or without message class.

This type of classes have attributes inherits
from the CX_ROOT super-class. From this
attributes we use very often the TEXTID attribute
and PREVIEUS attribute.

Fig. 3 shows a Function Module that access
data from a database table and use an user defined
exception class. When the user enters an id that
doesn’t exist in the database table, an eception of
type YCX_EXCEPTION_CLASS OTRTXT is raised
and a proper error message is shown to the end
user.

Fig. 4 shows the new defined exception id and
attribute for this exception class. In the Text tab we
can find the exception id YCX_ECEPTION_TXT
that we have used in our Function Module.

B. Exception class with text from a
message class

We create an exception class
YCX_EXCEPTION_CLASS _MSGTXT with
text from a message class. In this case
exception class implements the interface
IF_T100_MESSAGE and we can use exception
texts from database Table TOO.

Fig. 5 shows the defined exception class.

Before we can use this class we have to
create a Message Class and assign it to our
exception class. In Fig. 6 we presented the
Message Class YMSG_CLASS, created with
Message Maintenance SE91.

Messages are stored in the database Table
T100 that has colums as: message number,
short text, language key. Fig. 7 shows the
structure of this table.

33

http://help.sap.com/saphelp_nw04s/helpdata/en/9f/dbaae335c111d1829f0000e829fbfe/content.htm

Message class YHEG_CLASS Activ
Aftributes

(£ 1551 1 O i T

| |Messaoe|Messane short text

nen The Book id & does not exist!
e[En] ALction not suported!
ooz Records are not saved!

Fig. 6 Message Class YMSG__CLASS _ -
Each exception id can be mapped to a Fig. 8 Exception id mapped to message class and
message id from our message class. In Fig. 8

is shown a mapping example. As can be seen
when we use text from a message class we have
a restriction to maximum four placeholders. We
can assign maximum four attributes from the

exception class.

ANNALS OF FACULTY ENGINEERING HUNEDOARA — INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 — 2673)

| =2 G 3 Long Tesxt [Messaoe Text |
Exception 1D [Tt

YCH_EXGEPTIOM_CLASS_MSGETHT
YCH_EXGEPTIOM_GCLASS_T100

B = ~s=sign Attributes of an Exception Glass to a Messade

Message Class
Message Mumber

TMSG_GLASS
ano
Message Text The Book id & does not exist
Attributes for Exception Class

Attrib. 1 BOOK_ID

Adtrib. 2

Attrip. 3

Attrip. 4

L)

message number

T
Messages

Active
Short Deserigtion

Attributes

DehvenfandMamtenance Entry help/check CurrencyGuantity Filds

Fig. 9 illustrates the way we can use our
exception class into an ABAP class that selects
data from a database table through the help of

[[] =kEEe] s]| |

[TFien [y init..[Data element— [oata Ty, [Length [Deci.. [3hort Descrition
SPRSL SPRES LANG 1 ALanguage Key
ARBGR ARBGE CHAR 20 [Application Area
MEGNR MEGNR GHAR 3 AMessage number
TEXT NATET CHAR 73 OMessaye tent

SQL statements.

Ty. |Parameter

|Type spec |Descripti0n

e ID_PROD

B YCH_EXCEPTION_CLASS _MGTXT

TYPEYTIPD-IDPROD id
exception class with message class

Actiunsm

Fig. 7 The structure of T100 database table

2.2. MESSAGES, EXCEPTIONS
AND WEB DYNPRO ABAP

Web Dynpro ABAP is the SAP
Framework that uses Model View Controller
MVC paradigm in order to build reusable
multi-component web business applications.

Through a What You See Is What You
Get view editor we can simply drag and drop
the Ul Elements that we need and we have fully
support to work with messages [8].

The presentation of messages in the
client is controlled by Web Dynpro Framework
and Hook method wddobeforeaction() can us
help to react to user inputs [9].

A. Exception class and

Method CONSTRUCTOR Active
Emethod constructor.
select single *
from ytipd
into ytipd wa
where idprod = id prod.
E if sy-subre < 0.
raise exception type yox_exception class_msgtxt
exporting
textid = yex_exception class_msgtxt=-yex exception class ti100
book_id = id prod.
endif.
endmethnel.'
Fig. 9 ABAP class and exception class
iew WIEW_BOOKS Active
Properties Lawout Inhound Flugs Cwthound Plugs Context Attributes
[& wetrodust |[ga Method [«]~]
thod: ONACT IONSEARCH
E R

Web Dynpro ABAP
Web Dynpro ABAP offers us
support to work with exception

Scope \WETHOD onactionsearchiTRY

data lr node type ref to if wd context node.
data ls_data type if_view_books=:element_search.
data: lv_idprod type ytipd-idprod.
lr node = wd context-sget_child node(1.
lr_node->get_attribute | exporting neme =
importing walue = lv_idprod .
data oref type ref to yox_exception olass magoxt.
try.
create chject model exporting id prod = lv_idprod.
1 walus wa = wodel->yripd wa.
catch yox_exception_class_msgtxt into oref.

datz: 1 current controller type ref to if wd controller,

1_wessage_manager
1_current_controller 7= wd this->wd_get_api| | .

1 wessage manager = 1 current controller->get wesSSade Wanageri | .

1 message_manager--report_exceptioni
message_object = oref).
endtry.

type ref to if_wd message_manadger.

ABAP

Fig. 10 Catch and show of the exception message

classes through methods of the
Message Manager.

In Fig. 10 we present the way
we can use in a Web Dynpro
application, the class defined
hereinbefore. =~ What is more
important is the fact that we can
catch the proper exception and
show it in browser in a MessageArea
Ul Element.

All the messages that are shown
with Web Dynpro ABAP are displayed
as default at the begin of the screen. In

Ln 16 Cal

our case we want to change this position and in this purpose we use a MessageArea Ul Element. In fig.
11 we show the proper User Interface.

34

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

Earans-smam

) I 11 ANNALS OF FACULTY ENGINEERING HUNEDOARA — INTERNATIONAL JOURNAL
'h [], \ - OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 — 2673)

ulty Engimeer lll](LLETTIEE FTe

Library

P The Book id 126 does not exist!

I Category: [126 -; Search ¢

= Books Books

Computer & Internet icd Product Mame

Hiztory
Audiobooks
Calendars
Children's Books
Comics

Cooking

Fowe 0 of O
F Games

F Sotware

Fig. 11 The User Interface with Web Dynpro ABAP

B. Assistance class and Web Dynpro ABAP

An assistance class is a regular ABAP class that inherits the
CL_WD_COMPONENT_ASSISTANCE. Every Web Dynpro component has assigned just an
assistance class that we can use as Model or to work with text symbols.

The class CL_WD_COMPONENT_ASSISTANCE provides central functions by which a Web
Dynpro component can access text symbols of the assistance class [10]. As advantages of using
Class YOL_ASSISTANGE_CLASS_MSG Active assistance class we can SpeCify [11]:

+ Method calls of the assistance class have
more performance as calls of methods of a
Web Dynpro controller.

oconlm] + Manag_e dynamic texts
o5 In Fig. 12 we present the text symbols that
DB1 Al Filds have to he filed! 28 30 we have defined for a created assistance class
082 Email adress itis wrongh. Pleas restare! 41 60 YCL ASSISTANCE CLASS MSG.
Fig. 12 Text symbols of assistance class T o [Tyoe sose [Besarinton
bu@ FIRST_MAME TYPE YREGISTRATION-FIRSTMAME First Mame
In our assistance class we define a new 2 Za™" oo e Dot ame
methOd INSERT—VALUES With WhiCh We Can :;l h:s:f::;EPT\ON,CLASS,MSG'D(T TITETREC STRATION NEseRoE :;SE:IED:c\assw\thmESsaQEC\ass
insert in the database table the informations — -
that the user enter in the registration form. T Dmethed Tazrt valoes.
Fig. 13 shows the method codding. 8l || o s Tt ForeEm ey S & fEE,
To show a message to the user when he T ot a1
doesn’t enter a proper value or to inform him ; e
that the data are successful saved (client-side 5 Bl e it s
validation) we use text symbols defined in our 1 | tasers yregiotravion from ceble seerth va.
assistance class. When an exception occurs we = TEES ENBEPEIOM EYVE JeN_Sreeprioe_plass megre
use the exception class. Fig. 14 illustrates the b e = Lo (e (R PReT e
way we can use the assistance class as model O

in our Web Dynpro application and the way we

- Fig. 13 Method of our assistance class
can catch the exceptions.

View VIEW_BOOKS Active
s NN o Properies | Layout | InboundPlugs | OutboundPlugs | Context | Afibutes | Actions TFIRFERN
Propgitien Lovoid |, bound Pligh | Outhaund Phigs , Conted Anrituns actions TR
[wetoaList 4B hethod [«]~]
g Mothod List |43 Malf |al=] Event Handler ONAGTLONSAVEDATA
Evars Handlar ONAGT 1ONGAVLEATA
1 1] 2 I L T = K P)
Paramster Type RefTo [Associated Tyne [Shart Description
WDEWENT Imparting GL_WD_GUSTOM_EVENT
imnaring_—1
Ky I
54 | data text type string.
35 text = wd_assSist->1if_wd_component assistance-get_text| key =
36 | 'ooot oy,
37 if 1v_firstname 15 not initial and lv_lastnawe iS not initial and
38 1v_ewail 1s net initial and 1v_wessage 1S not initial.
39 1_ecurrent_controller ?= wd_this-—>wd_get_api().
4n; call wethod 1_current controller->get Message_wanager
or 7wl i ta 41 receiving
= 1_ew _eanceoller ger_message_mansges() az} message_manager = 1 _message_manager.
a3 call method 1 message manager->report_success
iehor a4} EXpOrting
R 45 nessage_text = rext
Seape METHOD onatansmadas AP [Ln 1 Gol 1 T ETED) — [Ep |la sied o=

Fig. 14 Web Dynpro and assistance class Fig. 15 Access of text symbols from assistance class

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 35

nnnnnn

’“n(ll 1; ANNALS OF FACULTY ENGINEERING HUNEDOARA — INTERNATIONAL JOURNAL W

L OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 — 2673)

Through the attribute WD_ASSIST and the method WD_COMPONENT_ASSISTANCE ~GET _

TEXT() we can access text symbols of the assistance class from our component controller, Fig. 15.

We have to specify that for

Library client-side validation we can use even
mThereg\strat\ondataaresuccessfu\ messages that are deﬁned dil’ectly in

zaved

the message class but is not

recommended to involve the message

AR MARNERCL texts directly in coding. In Fig. 16 we
Last Mame: * AMDRE .

» Books : present the corresponding User
Ermail: * tARINESCLLANDREIZNER DE .

= e Interface in Web Dynpro ABAP.
| MEED & GOOD PHP BOOK! E

b Sotware | NEED & ADVICE. THENKS! 3. CONCLUSIONS

* Registration |

Resistraion Form] In this paper we have presented
[savE |

applic

some of the concepts to develop robust
Fig. 16 User Interface with Web Dynpro ABAP software by ABAP programming
language. When we develop an

ation we have to plan a good exception and messages handling to describe in detail the error

situation, to check the data input from the user and to show the program status. We have seen the

advan

tages of using the new class based exception concept of the ABAP language and some of the tools

that Web Dynpro ABAP gives us in order to simplify the message and error handling.

REFERENCES

[1]

[2]
(3]

[4]
[5]

(6]

[7]
(8]

[9]
[10]

[11]

36

L. Heilig, S. Karch, O. Brottcher, C. Mutzig, J. Weber, R. Pfenning, SAP NetWeaver: The official
Guide, Galileo Press 2008

Horst Keller, Sascha Kruger, ABAP Objects, Galileo press 2007
http://help.sap.com/saphelp_nwO04s/helpdata/en/a0/ff934258a5¢c76ae10000000a155106/fr
ameset.htm

Horst Keller, The official ABAP reference, Galileo Press, 2005
http://help.sap.com/saphelp_nwO04s/helpdata/en/5f/8b2e16880111d194cb0000e8353423/fra
meset.htm

http://help.sap.com/saphelp_nwO04/helpdata/en/4a/fff13a62dlad6de 100000
00all405a/frameset.htm

Rich Heilman, Thomas Jung, Next Generation ABAP Development, Galileo Press 2007

The 14th international conference, The knowledge based organization, November 2008,
Cristea Ana Daniela, Adela Diana Berdie, Osaci Mihaela, User Interfaces with Web Dynpro
ABAP and Web Dynpro Java, “Nicolae Balcescu” land Forces Academy publishing Haus Sibiu,
2008.

Ulli Hoffmann, Web Dynpro for ABAP, Galileo Press 2007
http://help.sap.com/saphelp_nwO04s/helpdata/en/21/ad884118aal1709e10000000a155106/fr
ameset.htm

Karl-Heinz Kiihnhauser, Discover ABAP, Galileo Press, 2008

@;) ‘@f

ANNALS OF FACULTY ENGINEERING HUNEDOARA
— INTERNATIONAL JOURNAL OF ENGINEERING
copyright © University Politehnica Timisoara,

Faculty of Engineering Hunedoara,

5, Revolutiei, 331128, Hunedoara,

ROMANIA
http://annals.fih.upt.ro

“m,

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

http://help.sap.com/saphelp_nw04s/helpdata/en/a0/ff934258a5c7
http://help.sap.com/saphelp_nw04s/helpdata/en/5f/8b2e16880111d19
http://help.sap.com/saphelp_nw04/helpdata/en/4a/fff13a62d1ad6de%20100%20000
http://help.sap.com/saphelp_nw04s/helpdata/en/21/ad884118aa1709e10000000a155106/frameset.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/21/ad884118aa1709e10000000a155106/frameset.htm
http://www.sap-press.de/katalog/buecher/titel/autoren/gp/titelID-1830?GalileoSession=46342061A3xqp9-9O5M#1030

	2.1 WORKING WITH EXCEPTION CLASSES AND TEXTS FOR XCEPTIONS
	2.2. MESSAGES, EXCEPTIONS AND WEB DYNPRO ABAP
	A. Exception class and Web Dynpro ABAP
	B. Assistance class and Web Dynpro ABAP

