

EDUCATIONAL SOFTWARE METHODS AND STRATEGIES
FOR DESIGNING ALGORITHMS BACKTRACKING, GREEDY

METHOD AND DYNAMIC PROGRAMMING

Tatiana-Elena DUŢĂ, Alexandru OPREAN, Manuela PĂNOIU

Department of Electrical Engineering and Industrial Informatics,
“Politechnica” University of Timisoara, ROMANIA

Abstract

This paper present visual interactive software which shows through simulation the main algorithms
use in searching solutions in artificial intelligence. It was studies backtracking, greedy and dynamical
programming algorithms. The software is multimedia educational software designed for acquisition
and learning process and it can be seen as a modern method for teaching methodology. It was also
perform a comparative study of these algorithms using some typical known problems.

Keywords:
Algorithm visualization, backtracking, dynamic programming, greedy algorithm

1. INTRODUCTION

The teaching art consists not only in the scientific strictness of exposing the subject matter to be

studied, but also in including in this activity of all influence forms upon the student [1]. One of the
main aspects of using computer for lessons is the development of the students creative thinking. An
optimal mean in this case is the introduction in the computational training means of the interactivity
elements. Educational software provides this important feature - it is interactive: it offers to the
learner the opportunity to manipulate the model for achieving in a short time, a high volume of
knowledge (more complex and stable).

This paper present not only one useful application to the study of solving algorithms with
backtracking, greedy method and dynamic programming but also a comparative study of these
algorithms in terms of executive time.

2. DESCRIPTION OF THE INFORMATICS SYSTEM

For informatics system design it was use a visual oriented object language, Borland C++ Builder.

This environment is very useful because it generate a native code for Windows platform, which is the
most used operating system.

Application interface is very simple. I have focused on the fact that all students and even
beginners, in algorithms and programming tricks could use it. From the main menu, you can see in
Figure 1, you can choose four paths of the project:

 Presentation of Backtracking method
 Presentation of Greedy method
 Presentation of Dynamic Programming
 A comparative study for these three algorithms earlier selected

By selecting any of these options from the application interface a new window will open which
will contain the main menu for accessed algorithm.

The animation is realized using Xara 3D and starts the creation of the form.
Buttons are simulations realized with the help of images performed through program 3D Button.

The effect of "push" the buttons is realized with Label type components, showing the explanatory text
of the buttons.

Here are the main buttons for navigation. The name of each button will show the exact segment
you want to make active. So, every time you click on *, from the book, you are accessing the” Theory"

129 Tome VIII (year 2010), Fascicule 3, (ISSN 1584 – 2673)

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 – 2673)

page where you'll find three more buttons. Each button is a links for another page, where you can
find, depending on the button name, information about the accessed method.

By running a click on Applications, you'll find
applications, made to exemplify through images and
algorithm of this procedure. Also, through the
window on the right corner of the interface, you can
learn what each button contains, simply passing the
mouse over it.

Figure 1. Main Menu

 2.1.Backtracking algorithm simulation
Backtracking is a general algorithm for finding

all (or some) solutions to some computational
problem, that incrementally builds candidates to the
solutions, and abandons each partial candidate c
("backtracks") as soon as it determines that c cannot
possibly be completed to a valid solution, [3].

Backtracking is an important tool for solving constraint satisfaction problems. It is often the
most convenient (if not the most efficient) technique for parsing, for the knapsack problem and other
combinatorial optimization problems. It is also the basis of the so-called logic programming languages
such as Prolog use for artificial intelligence. Backtracking can be applied only for problems which
admit the concept of a "partial candidate solution" and a relatively quick test of whether it can possibly
be completed to a valid solution. When it is applicable, backtracking is often much faster than brute
force enumeration of all complete candidates, since it can eliminate a large number of candidates with
a single test.
For backtracking algorithm simulation it was use the following well known problems: the N queen’s
problem, the coloring maps problem, the horse jump on chessboard problem, and other problem that
can be solve using backtracking. From these one, in this paper is present the map coloring problem.
The map coloring problem is a very well known problem and consists in finding the appropriate color

to coloring a map so than two neighborhood
regions on the map to have distinct colors. The
graphical user interface for algorithm analyze in
shown in fig. 3.

The simulation allows to visualize the
algorithm step by step or to visualize entire
algorithm. For the first case the user can push
the “Step by step” button after each step. This
means that appear a new color for the current
region on the map, after pushing the above
mentioned button. At the same time the stack
variation is updated by increasing or decreasing
the top of stack. During the simulation the user
can see the stack variation and the map partially

colored. The test map can be load from a file (a *.bmp file). In a frame is show also the algorithm
implemented in C++. After a solution is found, this is displayed in a separate frame.

Figure 2. Main Menu Backtracking

Fig. 3. The map coloring problem

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

130

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Backtracking#cite_note-2#cite_note-2
http://en.wikipedia.org/wiki/Constraint_satisfaction_problem
http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Brute_force_search
http://en.wikipedia.org/wiki/Brute_force_search

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 – 2673)

2.2. Greedy algorithm simulation
A greedy algorithm is any algorithm that follows the problem solving meta-heuristic of making

the locally optimal choice at each stage [4] with the hope of finding the global optimum. For example,
applying the greedy strategy to the traveling salesman problem yields the following algorithm: "At each
stage visit the unvisited city nearest to the current city". Greedy algorithms mostly (but not always) fail
to find the globally optimal solution, because they usually do not operate exhaustively on all the data.
Nevertheless, they are useful because they are quick to think up and often give good approximations to
the optimum.

For Greedy algorithm simulation it was use the following well known problems: Dijkstra’s
Algorithm, Connecting cities with minimum cost, Prim’s Algorithm, the Knapsack problem. These
examples can be selected using a graphical user interface similar with the one presented in fig. 2.

The Dikstra’s algorithm
visualization is exemplified in
this paper. The graphical user
interface is shown in fig 4.

In this simulation, the
user can build the adjoining
matrix for the graph manually
or be loading from a file. As the
previous presented simulation,
the user can run the entire
algorithm using a desired
animation speed or the
algorithm can be run step by
step. During the simulation,
the user can see the costs
matrix updating, a vector with
selected nodes and the current
length way in each moment.
Finally, in a frame on the GUI,
all the ways from all the nodes

to the selected start node are printed. The user can see also the algorithm implemented in C++
language.

Fig. 4. The Dikstra’s algorithm visualization

2.3. Dynamical programming algorithm simulation
In computer science and also in mathematics, dynamic programming is a method of solving

problems that exhibit the properties of overlapping subproblems and optimal substructure [5]. The
method takes much less time than native methods. This method can be applied to many string
algorithms including longest common subsequence, longest increasing subsequence, longest common
substring. It can be also applied to many algorithmic problems on graphs can be solved efficiently for
graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree
decomposition of the graph. In this software was simulating the Roy – Floyd algorithm. This is a
simple algorithm for determining dot-matrix graph roads. One execution of algorithm finds the
shortest path between all pair vertices of the graph. In many practical situations the question is to
determine a shortest way between two vertices of the graph. The graphical user interface is similar
with the GUI for Djiskstra’s algorithm simulation and provides the same options. Another simulation
was made for maze problem.

3. CONCLUSIONS. COMPARATIVE STUDY

Comparative study was possible after using backtracking algorithms, greedy and dynamic

programming of some representatives problems. The conclusions are presented below.
3.1. Backtracking-Dynamic programming
Solving problems by dynamic programming is done in polynomial time, because each optimal

"more general" is calculated from optimum "more private" searching in polynomial time, and the
calculated optimum time is not recalculated later but switched to calculating the optimum "more
general”.

Therefore the method of dynamic programming may be considered as an alternative to the
backtracking method. It is clear that the problems which may be solved through backtracking may be
solved by dynamic programming as well. If the backtracking method is used you can obtain an

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

131

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Problem_solving
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Greedy_algorithm#cite_note-NISTg-0#cite_note-NISTg-0
http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Overlapping_subproblem
http://en.wikipedia.org/wiki/Optimal_substructure
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Longest_common_subsequence_problem
http://en.wikipedia.org/wiki/Longest_increasing_subsequence_problem
http://en.wikipedia.org/wiki/Longest_common_substring_problem
http://en.wikipedia.org/wiki/Longest_common_substring_problem
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Treewidth
http://en.wikipedia.org/wiki/Clique-width
http://en.wikipedia.org/wiki/Tree_decomposition
http://en.wikipedia.org/wiki/Tree_decomposition

ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 – 2673)

algorithm that can reach (in the most unfavorable case) exponentially. Dynamical programming is
more efficient that Backtracking.

If the dynamic programming method is used we can obtain a single optimal solution, unlike the
backtracking method that generates all the optimal solutions.

3.2. Backtracking-Greedy
Although both methods offer solutions in the form of vector, the greedy method and

backtracking method have the following differences:
 backtracking technique provides all the problem solutions, while greedy method is providing

a single solution;
 greedy technique doesn’t have a mechanism for going back (which is specific for

backtracking method) that is why is impossible to achieve the global optimum.
Regarding the time running, Greedy algorithms are more efficient but it doesn’t apply to

whatever problem.
3.3. Greedy-dynamic programming
Both dynamic programming and greedy technique can be used when the solution to a problem is

seen as the result of a sequence of decisions. The essential difference between greedy technique and
dynamic programming is that the greedy method generates a single sequence of decisions, exploiting
incompletely the optimality principle. In dynamic programming are generated more sub sequential
decisions, taking in consideration the optimality principle, but considering only the best sub
sequences, combining them in the final optimal solution. Although the total number of sequences of
decisions is exponential, dynamic programming algorithms are often polynomial, the reduction of
complexity due to the use optimality principle. Another important characteristic of dynamic
programming is that it stores the optimum sub sequences, thus avoiding their recalculation.

Although the greedy algorithm does not guarantee obtaining the optimal solution, however it
has the advantage that it is more efficient in terms of execution time and memory used than dynamic
programming algorithm and the corresponding backtracking method.

Final conclusion is: when solving a problem by greedy method, execution time is polynomial
(instant solution) for different input data. Solving through the backtracking method the execution time
increases exponentially by the increase of input data’s volume. For the dynamic programming method
the execution in most cases is increasing polynomial with the input data. If recursively is used in
solving a problem using dynamic programming, execution time increases exponentially with the input
data.

REFERENCES
[1.] E. Scalon, C. Tosunoglu, A. Jones, P. Butcher, S. Ross, J. Greenberg, Learning with computers :

experiences of evaluation, Computer Education, Elsevier Science, 1998
[2.] J. Trindade, C. Fiolhais, L. Almeida, Science Learning in Virtual Environments, British Journal

of Educational Technology, 2002
[3.] Donald E. Knuth (1968). The Art of Computer Programming. Addison-Wesley.
[4.] Introduction to Algorithms (Cormen, Leiserson, and Rivest) 1990, Chapter 16 "Greedy

Algorithms" p. 329.
[5.] Bertsekas, D. P., 2000. Dynamic Programming and Optimal Control, Vols. 1 & 2, 2nd ed.

Athena Scientific.
[6.] Herlo D., Metodologia educaţională, Editura Universităţii „Aurel Vlaicu”, Arad, 2000
[7.] Mihai Oltean, Programare avansată în Delphi, Editura Albastră, Cluj-Napoca, 2000
[8.] Pătruţ B., Aplicaţii în Delphi, Editura Teora, Bucureşti, 2001
[9.] Sorin T., Iniţiere în programarea vizuală, Editura L&S INFOMAT, Bucureşti, 2002
[10.] Vladimir-Ioan Creţu, Structuri de date şi algoritmi, Editura Orizonturi Universitare,

Timişoara 2000

132 © copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA

http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Introduction_to_Algorithms

