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ABSTRACT:   
This paper presents a methodology to derive the mathematical models and the algorithms for numerical 
investigation upon the spatio-temporal stability of viscous swirling flows. Our discussion centers on the 
implementation procedures based on spectral collocation technique. In viscous temporal analysis, the eigenvalue 
problem that govern the flow stability has been written in a matriceal form and a clustered grid has been set. In 
spatial analysis, the hydrodynamic model leads to a non-linear eigenvalue problem, that has been linearized using 
the companion vector method. Both methods provide an accurate approximation of the spectrum without any 
scale resolution restriction and relevant information on perturbation amplitudes for stable or unstable modes. 
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1. INTRODUCTION 
 

In most cases, the spatially or temporal stability (classified for open flows as in [8]) under 
infinitesimal perturbations is reduced to the study of an algebraic eigenvalue problem which imply to 
solve a dispersion relation, connecting the frequency ω  and the axial wavenumber α  as a 
consequence of the condition that nontrivial eigenfunctions exist. The instability of the flow is 
described by the dispersion relation in the spectral space )( ,ωα  corresponding to the spatio-temporal 

evolution of the most unstable mode in the physique space . Most of the  investigations [6-12], 
concerned the values of the nondimenional parameters for which the vortex become unstable in the 
case of either a spatial stability or temporal stability analysis. When the complex frequency 

), tr(

ir i ωωω ⋅+= , )Re(ωω =r , )Im(ωω =i

ii

 is determined as a function of the real wave number a 

temporal stability analysis is in fact performed. Conversely, solving the dispersion relation for the 

complex wave number,

k

r ααα ⋅+= , =rα )Re(k , )kIm(i =α , when ω  is given real leads to the 

spatial branches ),( Ψωα  where by Ψ  we denoted the set of all other physical parameters involved. 
In both cases, the sign of the imaginary part indicates the decay or either the growth of the 
disturbance.  

Although a spatial stability analysis implies the investigation of a nonlinear eigenvalue problem, 
this type of analysis directly provides the frequency ranges of the most unstable modes.  More than 
that, the spatial stability results can be directly compared to the experimental ones since usually, in 
experiments, an excitation is applied to a point in the flow and then, the effect of the excitation is 
studied as the flow evolves downstream. 

This paper presents a numerical investigation upon the temporal and spatial stability of a swirl 
flow subject to infinitesimal perturbations. For the case of high Reynolds numbers the nonlinear 
eigenvalue problems governing the temporal and spatial stability analysis of the vortex structure is 
investigated using a spectral collocation technique. The numerical procedures need different 
approaches for temporal and spatial viscous studies, respectively. We developed numerical 
implementations which directly provides relevant graphic information about perturbation velocities 
amplitude for stable or unstable induced modes in both cases. The paper is outlined as follows: we set 
the problem and derive the mathematical models in Section 2. Section 3 describes in detail the 
numerical procedures based on collocation technique. Section 4 relates the numerical results and 
Section 5 concludes the paper. 
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2. VISCOUS HYDRODYNAMICAL MODELS  
     FOR SPATIO-TEMPORAL STABILITY 

 
The starting point to develop the mathematical model of a swirling fluid flow are usually the 

non-dimensionalized Navier-Stokes (NS) equations for incompressible flow, neglecting body forces 
and the continuity equation. The evolution of small perturbations of the basic flow is governed by the 
following dimensionless linearized NS equations, obtained after substituting the expressions for the 
components of the velocity and pressure field into the NS equations and only considering 
contributions of first order terms 

0v =⋅∇ , v
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u)v(v)u(

v
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∂
∂ π

t
,                                           (1)   

where  represents the base velocity field and ( zθr ,u,uu=u ) ( )zθr ,v,vv=v  is the small velocity 
perturbation. 

The disturbance components of the velocity field and pressure into normal modes form are given 
here 
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where  represent the complex amplitudes of the perturbations, PHGF ,,, α  is the axial wave number 
complex,  is the tangential integer wave number and n ω  represents the complex frequency. The 
factorization with respect to the axial coordinate  is allowed by the assumption on an axisymmetric 
parallel flow, the factorization in the azimuthal direction can be considered based on the axisymmetric 
flow assumption also. A linear stability study implies infnitesimal type perturbations so a factorization 
in time can be considered. 

z

Assuming a steady columnar flow the velocity profile is written 
( ) ( ) ( )[ ]rWrVrV ,,0= ,                                                                       (3) 

where V  represents the tangential velocity component and W  the axial component of the velocity, all 
depending only on radius.  

The flow is assumed to be incompressible and the lengths in cylindrical coordinates are 

nondimensionalized with respect to the length scale s/ν , where ν  is the viscosity of the fluid and s 
is the strain rate of the base flow field. 

The hydrodynamic temporal stability model has the following form 

( ) ( )rsrs Η−≡Μω   ,  ( ) ( )TrPrHrGrFrs )(),(),(),(= .                                (4) 
Relation (4) consists in a set of partial differential equations for the perturbation velocities and 

pressure, expressed in a matriceal form. The non-zero elements of the 4 × 4 matrix operators M  and 
H  are given by 
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 and primes denote drdVV /'≡  and drdWW /'≡ . The Reynolds 

number  is defined according to the maximum difference of axial velocity and the vortex core 
radius, as described in [2]. 

Re

When we decompose the amplitude ir iFFF +=   and temporal frequency ir iωωω += , one sees 
how the real and imaginary part of F and ω  contributes to the wave solution 
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The flow is considered unstable when the disturbance grows, i.e. the imaginary part of the 
eigenfrequency ω  is positive. 

In spatial stability case, the eigenvalue problem governing the hydrodynamical stability has the 
form  

( ) 02
2 =⋅+⋅+⋅ SLLL αα

αα ,                                                                  (5) 

where  ( TPHGFS = )  and matrices , , 2α
L αL L  being of form 
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2
2 +≡  and derivatives are calculated with respect to the radius.    

The growth of the wave solution in spatial case depends on the imaginary part of the axial 
wavenumber, as described in the next formula 

( ) ( ) ( ) ( )[ ]{ }Θ++Θ++Θ+−Θ+− zFzFizFzFe rirrrirr
zi ααααα cossinsincos , tn ωθ −≡Θ . 

Here the flow is considered unstable when the disturbance grows, i.e. the imaginary part of α  is 
negative. 
 

3. NUMERICAL ALGORITHMS BASED ON SPECTRAL COLLOCATION 
 

The spectral collocation method is associated with a grid, that is a set of nodes and that is why it 
is sometimes referred to as a nodal method. The unknown coefficients in the approximation are then 
obtained by requiring the residual function to be zero exactly at a set of nodes. The set of the 
collocation nodes is related to the set of basis functions as the nodes of the quadrature formulae which 
are used in the computation of the spectral coefficients from the grid values.  

Instead of representing the unknown function through its values on a finite number of grid 

points as doing in finite difference schemes, in spectral methods the coeficients { }  are used in 

a finite basis of known functions 

Niif ..0=
{ } Nii ..0=Φ  

( ) ( ) rphgfPHGF i

N

i
iiii Φ=∑

=0

,,,,,, ( ).                                                     (6) 

The decomposition (6) is approximate in the sense that { } Nii ..0=Φ  represent a complete basis 

of finite-dimensional functional space, whereas  ( )PHGF ,,,  usually belongs to some other infinite-

dimensional space. Moreover, the coefficients ( )iiii phgf ,,,  are computed with finite accuracy. 

Among the major advantages of using spectral methods is the rapid decay of the error,  often 

exponential  for well-behaved functions.  Ne−
We choose for our study a Chebyshev Gauss-Lobatto collocation grid, that may be expressed as 

( ) NjNjj ..0,/cos == πξ .                                                            (7) 
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This formula has the advantage that in floating-point arithmetic it yields nodes that are perfectly 
symmetric about the origin, being clustered near the boundaries diminishing the negative effects of the 
Runge phenomena[16]. This collocation nodes are the roots of Chebyshev polynomials and distribute 
the error evenly and exhibit rapid convergence rates with increasing numbers of terms.  

When doing simulations and solving PDEs, a major problem is one of representing an deriving 
functions on a computer, which deals only with finite integers. In order to compute the radial and 
pressure derivatives that appear in our mathematical model, the derivatives are approximated by 
differentiating a global interpolant built trough the collocation points. 

We choose { } Nii ..0=Φ  given by Lagrange’s formula 
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We made use of the conformal transformation, also used in [8] 
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that maps the standard interval [ 1,1−∈ ]ξ  onto the phisical range of our problem .  [ ]max,0 rr∈
Because large matrices are involved, we numerically solved the eigenvalue problem using the 

Arnoldi type algorithm [5], which provides entire eigenvalue and eigenvector spectrum. 

For non-axisymmetrical modes (cases having 1>n ), our boundary value problem have been 

solved subject to Dirichlet boundary conditions. This was numerically implemented as part of spectral 
collocation method by discarding the no effect first and last columns of the Chebyshev differentiation 
matrices of first and second order and also ignoring the first and last rows.  

In spatial analysis, the nonlinear eigenvalue problem that govern the flow stability can be 
transformed into a linear problem, using the „companion vector method”. We define the aditional 

vector h  such that the eigenvalue problem can be written in form 
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The mathematical models are completed in the both types of stability analysis with the boundary 
conditions from Batchelor [2] given in detail also in [8].       

                            ( ) 0,1|| ====> PHGFn ,                                                             (11a) 

           ( ) ,,,0,0 finitePFHGn ===                                                             (11b) 

         ( ) .0,0,1 ===±±= PFGHn                                                              (11c) 
 

4. NUMERICAL RESULTS 
 

We consider a swirl flow [1] characterized by the velocity field 

( ) ⎟
⎠
⎞⎜

⎝
⎛ −= − 2
1 re

r

q
rV ,  ( ) 2rearW −+= ,                                                         (12) 

where V  represents the tangential velocity component and W  the axial component of the velocity, q  

represents the swirl number defined as the angular momentum flux divided by the axial momentum 
flux and  provides a measure of free-stream axial velocity. In [13] a Chebyshev spectral collocation 
method for temporal and spatial stability is also presented.  

a
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In temporal stability analysis, in case n = 2 for given parameters Re = 8000, α = 3.5, q = 1, the 
fluid system is stable, as can be seen in Figure 1a. 

For axysimmetrical mode n = 0, having the same initial parameters, Re = 8000, α = 3.5, q = 1, 
an eigenvalue with positive imaginary part occurred in spectra, thus the conclusion that the fluid 
system became unstable (Figure 1b). 

a. b.  
Figure 1.  The „Y” shape of the eigenvalue spectra,  for N=100 collocation points 

a. Stable fluid system in case 2=n , 8000Re = , 5.3=α , ;   1=q
b. Unstable fluid system in case 0=n , 8000Re = , 5.3=α ,  1=q

 
Figure 2. Variations in time of the differences between perturbed velocity fields developed for the 

first unstable eigenfrequency and the least stable one 

  
Figure 3. Spatial tangential perturbation G and axial perturbation H for non-axysymetrical mode 

, with parameters 3=n 50=N , 10000=Re , 752.−=ω , 10.q = . 
 

We denote by the least stable eigenfrequency, the stable eigenvalue with maximum imaginary 
part, and by the first unstable eigenfrequency, the unstable eigenvalue having minimum imaginary 
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part. The least stable eigenfrequency is iLST 051863.07591.1 −=ω , and the first unstable one 

iFUS 02789.02934.3 +=ω . Figure 2 presents the variations in time of the differences between  

perturbed velocity fields developed for temporall frequencies FUSω  and LSTω . Figure 3 shows the 

tangential perturbation and the axial perturbation for non-axysymetrical mode, computed in spatial 
stability analysis. 

 

5. CONCLUSION 
 

We have made a numerical investigation upon the spatio-temporall stability of a swirl flow, 
subject to infinitesimal perturbations. We have derived the hydrodynamic models describing the 
spatio-temporal stability and we have implemented numerical algorithms based on Chebyshev spectral 
collocation technique. We numerically obtained information on the state of the fluid system. For fixed 
parameters  Re , α , and , the stable system in non-axisymmetricall mode became unstable if the 

tangential wavenumber n is set to zero. We obtained a graphical visualization of the differences 
between perturbed velocities developed for the first unstable temporal frequency and the least stable 
one, in both the axisymmetrical and non- axisymmetrical modes.   

q
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