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ABSTRACT 
In this article, the resistance based unit cell models are developed to estimate the effective thermal 
conductivity of the two-phase materials including the effect of various inclusions. The algebraic 
equations are derived using unit cell based isotherm approach for two dimensional spatially periodic 
medium. The geometry of the medium is considered as a matrix of touching and non-touching in-line 
square, octagon and hexagon cylinders. The models are used to predict the thermal conductivity of 
numerous two-phase materials including the influence of primary and secondary parameters 
(maximum conductivity ratio of 1000, concentration ranging between 0 and 1 and contact ratio 
varying from 0 to 1). The contact ratio is deterministic parameter when conductivity ratio is high. The 
concentration is deterministic parameter when conductivity ratio approaching to one. For lower 
conductivity ratios (α < 1), the non-dimensional thermal conductivity is insensitive to the contact 
ratios, but it is sensitive to the higher conductivity ratios (α >1).    
Keywords: Effective thermal conductivity; Concentration; Conductivity ratio; Unit-cell approach; 
Inclusions; Two-phase materials 

 
 
 

1. INTRODUCTION 
 
The knowledge of the effective thermal conductivity of two phase materials is becoming 

increasingly important in the technologist developments and in many applications. As a consequence 
has been considerable effect in the past to develop suitable analytical model. The problem of 
determination of effective thermal conductivity describing heat transfer in two phase materials is 
serious interest for many technological applications. The importance of two phase materials like 
ceramics, granular materials, emulsions and metal foams lies in their applications in high performance 
cryogenic insulations, packed beds, heterogeneous catalysts and catalytic reactors, composite 
materials, power generation and powder metallurgy.   

Two phase materials are essentially composed of two distinct parts with different chemical or 
physical structures. They consist of continuous and dispersed phases and may be grouped in to in 
several distinct systems based on their characteristics. The two-phase systems are generally made of 
solid-fluid composition with variety of shapes and sizes. Two phase systems broadly are classified as 
porous, suspension, emulsion, sintered, and solid-solid systems. Many natural substances such as 
rocks, soils, biological tissues, and man made materials such as cements, foams and ceramics can be 
considered as porous systems. Some of the suspending system includes graphite, aluminum, and 
copper with water. Two –phase systems such as cello size in polypropylene glycol, water in petroleum 
solvent can be considered as emulsion system. The materials such as glass, alumina, and silica are 
considered as a sintered system. The solid-solid systems are considered as metal alloys.  

Maxwell’s work  [1] predicting the magnetic permittivity of a dilute suspension of spheres is the 
earliest reported work in the modeling of transport properties of two-phase media, but it is valid only 
for very low concentration of the dispersed phase. The Hashin Z. Shtrikman [2] models are the 
minimum and maximum bounds for predicting the thermal conductivity of the two phase system. 
These are the most restrictive bounds proposed and every model should incorporate these bounds as a 
minimum and maximum. The upper and lower limits to the conductivity of two-phase materials based 
on parallel and series resistances were given by Wiener [3].  Zehner and Schlunder [4] proposed a 

255 Tome VIII (year 2010), Fascicule 3, (ISSN 1584 – 2673) 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – INTERNATIONAL JOURNAL 
OF ENGINEERING. Tome VIII (Year 2010). Fascicule 3 (ISSN 1584 – 2673) 

 
 

model considering the effect of particle contact as well as the effect of secondary parameters such as 
thermal radiation, pressure dependence, particle flattening, shape and size distribution for cylindrical 
unit cell containing spherical inclusions. An important deficiency in the model is that the deformation 
of the flux field is taken only as a function of concentration, not as a function of the conductivity ratio. 
Krischer [5] was among the first to describe the unit cube thermal conductivity model. The particle is 
represented as a cube within a large unit cube. Kunii and smith [6] proposed a unit cell model 
consisting of spherical particles contacting at a point and assumed that the temperature gradient is in 
the direction of point contact. The heat conduction near the outer region of the unit cell is through the 
fluid phase around it. The equivalent thermal resistance of the composite layer is based on the thermal 
resistances of the fluid phase in series with the solid phase. A lumped parameter model for predicting 
the thermal conductivity of the porous medium was described by Hsu et al. [7]. They considered 
various porous geometric configurations under constant heat flux conditions with one-dimensional 
heat conduction in a unit cell. It was reported that the stagnant thermal conductivity based on the in-
line touching cube model with a contact ratio of 0.13 showed good agreements with experimental data 
of a packed sphere bed. Samantray et al. [8] proposed a comprehensive conductivity model by 
considering the primary parameters based on unit cell and field solution approaches. Later, the 
validity of the model was extended to predict the effective conductivity of various binary metallic 
mixtures with a high degree of accuracy Karthikeyan and Reddy [9]. Reddy and Karthikeyan [10] 
developed the collocated parameter model based on the unit cell approach for predicting the effective 
thermal conductivity of the two-phase materials.  

The aim of this paper is considering various primary and secondary parameters such as 
concentration of dispersed phase, conductivity ratio and contact ratio for predicting the effective 
thermal conductivity of two-phase materials. In this paper, a resistance based unit cell model is 
proposed with parallel isotherms to estimate the thermal conductivity of two-phase materials with 
various inclusions. In this approach, the influence of concentration, conductivity ratio and contact 
ratio are investigated.  
 

2. DEVELOPMENT OF CORRELATION FOR PREDICTING  
    AN EFFECTIVE THERMAL CONDUCTIVITY 
 
The development of resistance based unit cell model model for estimating the effective thermal 

conductivity based on the material micro and nano-structure is extremely important for thermal 
design and analysis of two-phase systems is reported by Reddy and Karthikeyan [10]. The electric 
resistance analogy leads to algebraic expressions for stagnant thermal conductivity of the two-phase 
materials. The main feature of resistance method is to assume one-dimensional heat conduction in a 
unit cell. The unit cell is divided into three parallel layers, namely, solids, fluid or composite layers 
normal to the temperature gradient. The effective thermal conductivity of two-phase system is 
determined by considering equivalent electrical resistances of parallel and series in the unit cell model. 
The thermal conductivity of the composite layer is obtained using the series model. 

The development of effective thermal conductivity modeling for two-phase materials for square 
cylinder has been developed and reported by Reddy and Karthikeyan [10].  The effective thermal 
conductivity of two-dimensional square cylinder is calculated for parallel isotherm conditions as 
follows: 

Total resistance offered by the square cylinder in the unit cell is given as [10]: 

 R  = R + R  + Rtotal 1 eff2 eff3                (1) 

1 ε(1- ) (α+ε (1- α)) (1-ε) (α+(1-α)ε )R  = +total α [ε(α-1) (1-ε)+1] α{(ε ) (1- ε ) (α-1)+1}k   f l
⎡ ⎤ ελ λ λ⎡ ⎤+⎢ ⎥ ⎢ ⎥λ λα⎣ ⎦⎣ ⎦

     (2) 

The non-dimensional thermal conductivity of two-dimensional square cylinder is given as [10]: 

1k ε(1- ) (α+ε (1- α)) (1-ε) (α+(1-α)ε )effK = = +α [ε(α-1) (1-ε)+1] α{(ε ) (1- ε ) (α-1)+1}kf

−ελ λ λ⎡ ⎤+⎢ ⎥λ λα⎣ ⎦
          (3) 

The effective thermal conductivity of the two dimensional medium can be estimated by 
considering an octagon and hexagon cylinders with cross-section ‘a x a’ having a connecting bar width 
of ‘c’ as shown in Figs.1 [a]-2[a]. The stagnant thermal conductivity of the two-dimensional periodic 
medium is the finite contact between the spheres by connecting plates with ‘c/a’ denoting the contact 
parameter. Because of the symmetry of the plates, one fourth of the cross-section has been considered 
as a unit cell and is shown in Figs.1 [b]-2[b].  
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                                     (a)                                                                                                 (b) 

Fig.1. Two-dimensional spatially periodic two-phase system: (a) Touching Octagon cylinder 
(b) Unit cell of Octagon cylinder 

 
                                    (a)                            (b) 

Fig.2. Two-dimensional spatially periodic two-phase system: (a) Touching Hexagon cylinder 
(b) Unit cell of Hexagon cylinder 

 
The unit cell consists of three rectangular layers normal to the direction of heat flow. The 

thermal conductivity of the solid and fluid layer is obtained based on a series model. For octagon 
cylinder, first rectangular layer is fully occupied by the solid with a dimension of (l/2) (c/2) and other 
two rectangular layers consists of solid and fluid phases with a dimension of (l/2) {[a/2 + a/√2]-c/2} 
and (l/2) (l/2-(a/2+a/√2)) respectively. The effective thermal conductivity of two-dimensional octagon 
cylinder is calculated for parallel isotherm conditions as follows: 

 R  = R + R  + Rtotal 1 eff2 eff3      (4) 

Total resistance offered by the octagon cylinder in the unit cell is given as: 

( ) [ ]( )
( )( ) ( ){ }

( ) [ ]( )
( )( ) ( ){ }

( ) ( )
( ) ( )

2ε 1-λ + 21-λ1 2 2+ × kα 1+ 2 2+ 2 sf2 2 1- ε+ε 2 + ε 1-λ + 2 1 2 1kfR  = total 1 12ε 1-λ + 21-λ1 2 2+ + kα 1+ 2 2+ 2 sf2 2 1- ε+ε 2 + ε 1-λ + 2
kf

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥⎡ ⎤⎢ ⎥⎝ ⎠ ⎡ ⎤⎣ ⎦ ⎡ ⎤⎡ ⎤− ε+ε α+ −α ελ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦ελ ⎣ ⎦⎢ ⎥+ +
α α −ελ +ελ α+ −α⎢ ⎥⎡ ⎤⎛ ⎞

⎢ ⎥⎢ ⎥⎜ ⎟
⎡ ⎤⎢ ⎥⎢ ⎥⎝ ⎠ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

{ }
⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ελ⎣ ⎦⎢ ⎥⎣ ⎦

   (5) 

The non-dimensional thermal conductivity of two-dimensional octagon cylinder is given as: 

( ) [ ]( )
( )( ) ( ){ }

( ) [ ]( )
( )( ) ( ){ }

( ) ( )
( ) ( )

2ε 1-λ + 21-λ1 2 2+ × kα 1+ 2 2+ 2 sf2 2 1- ε+ε 2 + ε 1-λ + 2 1 2 1k keff fK = =
k 1 12ε 1-λ + 2f 1-λ1 2 2+ + kα 1+ 2 2+ 2 sf2 2 1- ε+ε 2 + ε 1-λ + 2

kf

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥⎡ ⎤⎢ ⎥⎝ ⎠ ⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎡ ⎤− ε+ε α+ −α ελ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦ελ ⎣ ⎦⎢ ⎥+ +
α α −ελ +ελ α+ −α⎢ ⎥⎡ ⎤⎛ ⎞

⎢ ⎥⎢ ⎥⎜ ⎟
⎡ ⎤⎢ ⎥⎢ ⎥⎝ ⎠ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

{ }

1−⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤ελ⎣ ⎦⎢ ⎥⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

 (6) 
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Similarly, for hexagon cylinder, first rectangular layer is fully occupied by the solid with a 
dimension of (l/2) (c/2) and other two rectangular layers consists of solid and fluid phases with a 
dimension of (l/2) [a√3/2 -c/√2] and (l/2) [l/2-(a√3/2)] respectively. The effective thermal 
conductivity of two-dimensional hexagon cylinder is calculated for parallel isotherm conditions as 
follows: 

 R  = R + R  + Rtotal 1 eff2 eff3     (7) 

Total resistance offered by the hexagon cylinder in the unit cell is given as: 

( )
( ) ( )

( ) ( )

( )
( )

2 3ε 3-λ 1 3  
k ελ ksf2 sf33 -λ +2 3 × × 2 3 1- ε+ ε - +ε 3-λ 1k 3 kf fR  = total 1 ε+

k3-λ +2 3 1 ελsf2 1 1× × 2 3 1- ε+ ε - +ε 3-λ
k α 3f 1

⎡ ⎤
−ε⎢ ⎥

⎢ ⎥⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞⎡ ⎤⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟ ⎡ ⎤ελ −ελ⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ελ ⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦+ +⎢ ⎥α ⎢ ⎥
⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎛ ⎞⎣ ⎦ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ελ⎝ ⎠⎣ ⎦⎢ ⎥ ×⎣ ⎦

α
( )ksf3 1

kf

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥−ελ⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦

   (8) 

The non-dimensional thermal conductivity of two-dimensional hexagon cylinder is given as: 

( )
( ) ( )

( ) ( )

( )
( )

2 3ε 3 -λ 1 3  
k ελ ksf2 sf33 -λ +2 3 × × 2 3 1- ε+ ε - +ε 3 -λ 1k 3k kfeff fK = = 1 εkf +

k3 -λ +2 3 1 ελsf2 1 1× × 2 3 1- ε+ ε - +ε 3 -λ
k α 3f 1

⎡ ⎤
−ε⎢ ⎥

⎢ ⎥⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞⎡ ⎤⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟ ⎡ ⎤ελ −ελ⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ελ ⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦+ +⎢ ⎥α ⎢ ⎥
⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎛ ⎞⎣ ⎦ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ελ⎝ ⎠⎣ ⎦⎢ ⎥ ×⎣ ⎦

α
( )

1

ksf3 1
kf

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥−ελ⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦⎣ ⎦

  (9) 

 3. RESULTS AND DISCUSSIONS 
 

The effective thermal conductivity of a two-phase system mainly depends on concentration, 
conductivity ratio, size, shape and contact ratio. The effect of concentration (υ) on the non-
dimensional thermal conductivity of two-dimensional geometry’s for low and high conductivity ratio’s 
(α = 20, 100, 1000) have been investigated and are respectively shown in Figs. [3-5]. The present 
model with various inclusions lies between parallel and series lines for conductivity ratio (α) = 20 and 
contact ratio (λ) = 0-0.4 are shown in Fig.3. The contact ratio is having major influence on effective 
thermal conductivity of two-phase materials when contact ratio varying 0 to 0.3, but there is no impact 
beyond 0.4. For octagon cylinder, the present correlation is applicable for concentration varying from 
0 to 0.7, for further increment in the concentration; the non-dimensional thermal conductivity is 
increasing beyond the upper bound. Similarly for hexagon cylinder the present equation is applicable, 
if the concentration varying from 0 to 0.8. Both the models are not applicable for concentration 
beyond 0.8, because the limitations in the shape of the models. Similarly for high conductivity ratio (α 
= 100, 1000), the deviation between the bounds are significance, this is due to increasing solid phase 
conductivity [Figs.4-5].  

The predicted non-dimensional thermal conductivity increases with the conductivity ratio and 
contact ratios are shown in Figs 6-8. For lower (υ= 0.1 and 0.3) concentrations, the deviation between 
all models are almost same. For higher concentration (υ = 0.8) and higher conductivity ratios, the 
deviation is more within the models. For λ = 0.1, the variation in the non-dimensional thermal 
conductivity has been considerable. It can be seen that the contact ratio (λ) is the deterministic 
parameter when the conductivity ratio (α) is high where as concentration is deterministic parameter 
when α is approaching to one. Similarly, for lower conductivity ratios (α < 1), the non-dimensional 
thermal conductivity is insensitive to the contact ratios, but it is sensitive to the higher conductivity 
ratios (α >1). From the iso-conductance point, α = 1, the non-dimensional thermal conductivity 
approaches to unity for all the models with the same slope. The present model shows a good trend for 
the concentrations 0.3 and 0.8. For low values of conductivity ratio (α), thermal conductivity 
estimations of all the models are comparable, but they deviate when the conductivity ratio approaches 
to 1000. 
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Fig. 6. Variation of non-dimensional thermal conductivity with contact ratios for square cylinder 
for (a) concentration - (υ) = 0.1, (b) υ = 0.3, (c) υ = 0.5, (d) υ = 0.8 
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Fig. 7. Variation of non-dimensional thermal conductivity with contact ratios for octagon cylinder 
for (a) concentration - (υ) = 0.1, (b) υ = 0.3, (c) υ = 0.5, (d) υ = 0.8 
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Fig. 8. Variation of non-dimensional thermal conductivity with contact ratios for hexagon cylinder 
for (a) concentration - (υ) = 0.1, (b) υ = 0.3, (c) υ = 0.5, (d) υ = 0.8 
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4. CONCLUSIONS 
 
The resistance based unit cell models are developed with the effect of various inclusions for 

estimating the effective thermal conductivity of the two-phase materials. The effects of concentration, 
conductivity and contact ratios on the non-dimensional thermal conductivity of various inclusions 
have been investigated. The present models can be extensively used for predicting the effective thermal 
conductivity of two-phase materials used in the engineering applications.  

 
Nomenclature 
a Length of the octagon and hexagon cylinders  
c Width of the connecting plate in the octagon and hexagon cylinders 
K   Non-dimensional thermal conductivity of the two-phase materials (keff /kf) 
keff Effective thermal conductivity of two-phase materials, (Wm-1K-1) 
kf Fluid or continuous thermal conductivity, (Wm-1K-1) 
ks Solid or dispersed thermal conductivity, (Wm-1K-1) 
ksf Equivalent thermal conductivity of a composite layer, (Wm-1K-1) 
R Thermal resistance, (m2K-1W-1) 
l Length of the unit cell, (m) 
Greek Symbols 
α   Conductivity ratio (ks/kf)` 
ε Length Ratio (a/l) 
λ Contact ratio (c/a) 
υ Concentration  
Subscripts 
eff Effective  
exp Experimental 
pre Predicted     
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