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ABSTRACT: Transition theory has been used to derive the elastic-plastic and transitional stresses. Results obtained
have been discussed numerically and depicted graphically. It is observed that the rotating disc made of
incompressible material with inclusion require higher angular speed to yield at the internal surface as compared to
disc made of compressible material. It is seen that the radial and circumferential stresses are maximum at the
internal surface with and without edge load (for flat disc). With the increase in thickness parameter (k = 2, 4), the
circumferential stress is maximum at the external surface while the radial stress is maximum at the internal
surface. From the figures drawn the disc with exponentially varying thickness (k = 2), high angular speed is
required for initial yielding at internal surface as compared to flat disc and exponentially varying thickness for k = 4
onwards. It is concluded that the disk made of isotropic compressible material is on the safer side of the design as
compared to disk made of isotropic incompressible material as it requires higher percentage increase in an angular
speed to become fully plastic from its initial yielding.
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INTRODUCTION

This paper is concerned with the analysis of a rotating disk made of isotropic material with
exponentially varying thickness. There are many applications of such type of rotating disks, such as in
turbines, rotors, flywheels and with the advent of computers, disk drives. The use of rotating disk in
machinery and structural applications has generated considerable interest in many problems in domain
of solid mechanics. The analysis of stress distribution in circular disk rotating at high speed is important
for a better understanding of the behavior and optimum design of structures. The analysis of thin
rotating discs made of isotropic material has been discussed extensively by Timoshenko and Goodier [1].
In the classical theory, solutions for such type of discs made of isotropic material can be found in most
of standard text books [1-5]. Chakrabarty [2] and Heyman [6] solved the problem for the plastic state
by utilizing the solution in the elastic range and considering the plastic state with the help of Tresca’s,
Von-Mises or any other classical yield condition. Han [7] has investigated elastic and plastic stresses for
isotropic materials with variable thickness. Eraslan [8] has calculated elastic and plastic stresses having
variable thickness using Tresca’s yield criterion, its associated flow rule and linear strain hardening.
Wang [9] has investigated deformation of elastic half rings.

Transition is a natural phenomenon and there is hardly any branch of science or technology in
which we do not come across transition from one state to another. At transition, the fundamental
structure of the medium undergoes a change. The particles constituting a medium rearrange
themselves and give rise to spin, rotation, vorticity and other non-linear effects. This suggests that at
transition, non-linear terms are very important and neglection of which may not represent the real
physical phenomenon. Therefore transition fields are non-linear, non-conservative and irreversible in
nature. Elasticity-plasticity, visco-elastic, creep, fatigue, relaxation are some of the examples of
transition in which non-linear terms are very important. At present, such problems like elastic-plastic,
creep and fatigue are treated by assuming ad-hoc, semi-empirical laws with the result that
discontinuities, singular surfaces, non-differentiable regions have to be introduced over which two
successive states of a medium are matched together. In a series of papers, Seth [1962-64] has given an
entirely different orientation to this interesting problem of transition. He has developed a new
‘transition theory’ [10-12] of elastic-plastic and creep deformation. The transition theory utilizes the
concept of generalized principal strain measure and asymptotic solution at critical points or turning
points of the differential system defining the deformed field and has been successfully applied to a large
number of problems [13-19]. The generalized principal strain measure [19] is defined as,
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where n is the measure and e,.? is the principal Almansi finite strain components. For n = -2, -1, 0, 1, 2 it

gives Cauchy, Green, Hencky, Swainger and Almansi measures respectively.

In this paper an attempt has been made to study the behavior of isotropic thin rotating disk with
exponentially variable thickness and edge load using transition theory [10]. The thickness of the disc is
assumed to vary along the radius in the form

r k
h=h,e (bj
where h, is the constant thickness at the axis, k is the geometric parameter and b is the radius of the
disk.
OBJECTIVE OF THE PRESENT STUDY

In order to explain the elastic-plastic deformation, it is first necessary to recognize the transition
state as an asymptotic one and in this work; it is our main aim to eliminate the need for assuming semi-
empirical laws, yield condition. We also obtain the constitutive equation corresponding to the transition
state.

Borah [16] identified the transition state in which the governing differential equation shows some
criticality. The general yield condition of transition is identified from the vanishing of Jacobian of

transformation, a((x,v,z) -0, Where (X,Y,2), (x,y,z) are the coordinates of a point in the undeformed and
ox,y,z

deformed state respectively.
GOVERNING EQUATIONS

We consider a thin disk of constant density with central bore of radius ‘a’ and external radius ‘b’.
The disc is rotating with angular speed ‘ w ’about an axis perpendicular to its plane and passed through
the center of the disc. A case of plane stress is taken in which the axial stress T, is zero. The disk is
assumed to be symmetric with respect to the mid plane.

The displacement components in cylindrical polar co-ordinates are given by [11].

u=r(1 8); v=0; w=dz (2)

where 8 is a function of r =4/x*> +y? only and d is a constant. The finite strain components are given as,

ch =22 e (pery] et Lp)
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r

On substitution of equation (3) in (1), the generalized components of strain are given as

e, =%[1—(,5+rﬂ')n] 699:%[1_ﬂn]

1 n
€. =;|:1_(1_d) ] €9 =€ =€, =0 (4)
The stress-strain relations for isotropic material are given as,
T = 15,';’1 +2ue;, (i,j=1,,3) (5)

where T;and e; are the stress and strain components respectively, A and p are the Lame’s constants,
Iy = ey is the first strain invariant and &; is the Kronecker’s delta.

Equation (5) for this problem becomes
_2Au
T A+2u

2Au
=———le_+e, |[+2ue
/1+2,u[ rr 99] HE g9

[err + eHH ]+ 2/uerr
00
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Tzz = Tr@ = T&z = Tzr =0 (6)
Substituting equation (3) in (5), the strain components in terms of stresses are obtained as

e =l-(p+p) H[n (—CH

2—C

€4 =£[1—ﬁ2 ]= %{Tw —(%)T}
e, =§[1—(1—d)2]= —(5)%@" ~Tu)

2-C
er& :eE’z :ezr =0 (7)
where E is the Young’s modulus and C is the compressibility factor of the material. In terms of Lame’s
constant they are given as
2 A+2
B e MBAT2p)

c=—F
(A+2u) (A+u)
Substituting equation (4) in (6), we get the stresses as

T =Z—ﬂls—zc—ﬁ”{1—c+(2—c)(r—'+1]nH
n B

Too :ﬂ[B—ZC—ﬂn{Z—C+(1—C)(r—ﬂ’+1Jn}]
n B

TrH = THz = Tzr = Tzz =0 (8)
Equations of equilibrium are all satisfied except
di(hrTrr)_hTHH +pr2a)2h=0 (9)
r

where p is density of material and h is the exponentially variable thickness of the disc.
Using equation (8) in (9), we get a non-linear differential equation in [ as

2.2 k
(2-0) nP,B”*‘(P+1)”‘1g—; :%Jrﬂ"{k(éj —nP}{1—C+(2—C)(P+1)"}

+A" {1—(P+ 1)" }— k(3—2c)(%)k

where r8'=6P (P is a function of 8 and 8 is a function of r). Transition or turning points of P in
equation (10) areP—~ 1 and P — +« . The boundary conditions are:
u=o0 atr=a

(10)

(11)

The edge load is attached at the boundary (i.e. at r = b) and because of inclusion the displacement
is zero at the inner surface.
SOLUTION THOUGH THE PRINCIPAL STRESS

It has been shown [13-19] that the asymptotic solution through the principal stress leads from
elastic to plastic state at the transition point P — +oo, we define the transition function R as [19]

R:ZLT% =[G-20)-prb—c+(1-)(P+1)" ] (12)
7,

Taking the logarithmic differentiation of equation (12) with respect to r and using equation (10),
we get

T, =0,atr=>b

npw’r’ (1 k{1—c+(2—C)(P+1)"}
y R
< logR)=- b2 pl-cra-o@] v

Taking the asymptotic value of equation (13) asP — too and integrating, we get
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cols)
R=Ar 2Ce\b (14)
where A, is a constant of integration, which can be determined by the boundary condition.
From equation (12) and (14), we have

A6
Too Zz_/uAﬂ'_Ee ° (15)
n
Substituting equation (15) in (9) and integrating, we get
K Ak Ak
g _2HA, (2- C)r P ce(gj _pa)zf(r)e[g) _}_ie(gj (16)
n(1-C) r rh,

k
where B, is constant of integration and f(r) :jrze[”J dr.

Substituting equations (15) and (16) in second equation of (7), we get

ﬁ=\/1 E[;_Ej“{pa’ f(r)- } (17)

Substituting equation (17) in (2), we get

umr- r\/1—(1_i) ol {pa’ f)-- } (18)

where E:% is the Young’s modulus in terms of compressibility factor. Using boundary
2_
condition (11) in equation (16) and (18), we get
B, ~hyperf(a), A == | %o, Lo HE)-FE) i (19)
2u(2— C) b

Substituting the values of constant of integration A, and B, from equation (19) in equations (15),
(16) and (18) respectively, we get the transitional stresses and displacement as

: {ﬁ +pw2{f(b)—f(a)}} (1-0) (g}z'ce[;]k (20)
Yl e b (2-O)\r

; { {ao RO —f(a)}}( b ] _po*{f(r) - f(a)}}(ljk (21)

i e b r r
= r—r\/ 2SN )l (22

From equation (20) and (21), we get
-y :[& N pr{f(b)—f(a)}}(gjz’ce(;J 1 porlf)-f@) (7] (3)
T e b r 2-C r

INITIAL YIELDING
From equation (23), it is seen that |T, —T,,| is maximum at the internal surface (i.e. at r =a),

therefore yielding will take place at the internal surface of the disc and equation (23) become,

_ {ao . pwz{f(b)—f(a)}}(bjz—’ce(ilk_ 1
e b a 2

‘Trr_THH‘r:a_ ?Ey(say)

and the angular speed necessary for initial yielding is given by

P (2—C>(aj¥c_n v (24)
' Y [%J“ b e [{f(b)-f(a)}
e

where T, =0,/Y
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FULLY PLASTIC STATE
The disc becomes fully plastic (C - o) at the external surface (i.e. at r = b) and equation (23) become

- {“2 —[pz“;]e{f(b) —f(a)}} =y

Angular speed required for the disc to become fully plastic is given by
poip’ _[aary] b2
4 e [f(b)-f(a)]

‘Trr - TH& ‘ r=b

.sz =

where Wf:& Y and T, =0, /Y".
b\p

We introduce the following non-dimensional components as
r a T T -
R=—, R,=—,0, =", 6,=-% and u=2
b b Y Y
Transitional stresses, angular speed and displacement can be obtained from equation (20)-(22)
and (24) in non-dimensional form as,

(25)

T, o (1-C) e
Oy :|:?+.Q J-R R dR:lmR CeR (26)
o, = {TJF.Q jRZ * clR]R_ICeRk - [jRZ - ] (27)
e o

_ _ 2 RK R
u=R-R 1—MQ—'eIRZe*de (28)

E(2-C) R Ao
o - (Z—C)kROE _Lo 1 (29)

eR° J‘Rz _pk

Stresses, displacement and angular speed for fully-plastic state (C—o0) are obtained from
equation (26)-(28) and (25) as

o, :{—+Q; JRZ - clR}RzeRk (30)
o, =[T—+02 ij R dR}R_zeRk - {IRZ R } (31)
e O

02 R
u=R—R 1———’j R7e ™ dre™ (32)

Ro
2] (33)

f e J'Rz _gk

NUMERICAL ILLUSTRATION AND DISCUSSION

In figure 1, curves have been drawn between angular speed (.Qf) and various radii ratios
R, =(a/b) for different compressibility factors (C = 0,0.25,0.5,0.75) and variable thickness (k=0, 2, 4). It
is observed that the rotating disc made of incompressible material with inclusion require higher angular
speed to yield at the internal surface as compared to disc made of compressible material and this
behavior remains the same with increase in edge load (T, = 0.1,0.2). With the increase in edge load, the
angular speed required for initial yielding decreases. From table 1, it is seen that for isotropic
compressible material, high percentage increase in angular speed is required to become fully plastic as
compared to rotating disk made of incompressible material.
In figures 2-5, curves have been drawn between the transitional stresses, displacement against the radii
ratio. The fully plastic stresses for various radii ratio (R = r/b) have been shown in figure 6. From figure 6,
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it is observed that the radial and circumferential stresses is maximum at the internal surface (for flat
disci.e. k = 0). With the increase in thickness parameter (k = 2, 4), the circumferential stress is maximum
at the external surface. With edge load the behavior remains the same. Similar graph is also obtained by

Guven [20] for rotating disc with rigid inclusion.
Table 1. Angular speed required for Initial Yielding and Fully Plastic state with Different Edge Loading (Flat Disc)

C increase in .
- | angular speed Q € angular Q7 | @ | inangular
) speed speed
CICIO 0 4.84 | 6.86 41.421 4.5059 6.5143 44.573 4.163 6.17 48.244
0.25 | 4.04 | 6.86 69.828 3.6948 6.5143 76.308 3.352 | 6.17 84.112
0.5 | 3.24 | 6.86 111.65 2.8969 6.5143 124.87 2.5541 | 6.17 141.63
0.75 | 2.46 6.86 178.58 2.1186 6.5143 207.48 1.7758 | 6.17 247.53
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Figure 1. Angular speed required for initial yielding at the internal surface of the rotating disc with variable
thickness (k=0, 2, 4) and edge loading (T,=0, 0.1, 0.2)
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Figure 2. Transitional stresses and displacement in a thin rotating disc along the various radii ratio (R = r/b) with
compressibility (C = 0) for variable thickness (K=o, 2, 4) and edge load (To=0, 0.1, 0.2)
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Figure 3. Transitional stresses and displacement in a thin rotating disc along the various radii ratio (R = r/b) with
compressibility (C = 0.25) for variable thickness (K=0, 2, 4) and edge load (To=o0, 0.1, 0.2)
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Figure 4. Transitiondl stresses and displacement in a thin rotating disc along the various radii ratio (R = r/b) with
compressibility (C = 0.5) for variable thickness (K=o, 2, 4) and edge load (To=0, 0.1, 0.2).
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Figure 5. Transitional stresses and displacement in a thin rotating disc along the various radii ratio (R = r/b) with
compressibility (C = 0.75) for variable thickness (K=0, 2, 4) and edge load (To=o0, 0.1, 0.2)
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Figure 6. Plastic stresses and displacement in a thin rotating disc along the various radii ratio (R = r/b) for variable
thickness (K=0, 2, 4) and edge load (To=0, 0.1, 0.2)
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CONCLUSIONS

It can be concluded that the disc made of isotropic compressible material is on the safer side of
the design as compared to incompressible material as it requires higher percentage increase to become
fully plastic from initial yielding.
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NOMENCLATURE OF SYMBOLS

a and b: Internal and external radii of disc
u,v,w: Displacement components
r,9,z : Cylindrical polar co-ordinates

P: Function of 8 only
C; : Material constants
C: Compressibility

e, : First strain invariant Aand u:Lame’s constants

8': Function of r only R: Radial distance R=(r/b), =~ R,=(a/b)

Y : Yield stress o, =(T,/Y) - Radial stress component

e. and T, : Strain and stress tensor O, = (Trgg /Y ) -Circumferential stress component
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