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ABSTRACT: Based on the results of [3] and [4] the current paper presents a general method which can be applied for
any approximation type of the hodographic method to study the compressible fluid’s permanent and subsonic
flux through profiles’ networks. Based on the defined mathematical model an analytical method is searched by
using the linear approximation of the compressible fluid’s characteristic curve and the special network’s turbine
profile. To be able to analyze on all the three hodographic methods the flux of the compressible fluid through the
special network the method of C.C.Lin (1949) was generalized. The method can be used even if the elements of the
special’s network are not turbine profiles, but the obstacles are satisfying the requirements of a geometrically and
phisically periodic system.
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INTRODUCTION

Lot of practical engineering problems can be originated from the solution of boundary value
problems. In most of the implied problems in engineering analysis, the real domain of the boundary
value problems has irregular boundaries, with complex properties of the domain from one zone to the
other, which are excluding any possibility to find analytical solutions for the fundamental equations. In
this case, the modern numerical methods represent the only way to obtain the suitable solutions. They
were used with a division of the complex domain by a grid, such as the method of finite elements (MFE),
or by the division of the domain in finite elements (finite difference method, MDF), or by linearly
approximating the physical model and its coupled geometrical model.

The Boundary Element Method (BEM) is an alternative new method of numerical study, where
only the boundary of the analyzed domain is divided in finite elements thus obtaining fewer elements
that in MFE. As a result, BEM proved to be very effective in economical and engineering boundary
problems. The main point of the real-BEM [1], is the determination of the fundamental integral equation
of the solution in a domain, with the aid of the values of the solutions on the boundary and of the “flux
values”. By aid of this formula the integral equation on the boundary domain is written, and by
discretization of the integral equation on boundary, the algebraically equation system which result in
the discretized solution gives a boundary. The engineering applications of this method were discussed in
[2], [10].

In the present paper a practical linear approximation is presented which is capable to solve the
compressible fluid’s flux through profiles’ network by using all three possibilities of the known
hodographic methods (Tschiaplighin-Demtchenko version, Karmdn-Tschien version, Caius lacob version).
The presented method searches an analytical solution and for this linear approximation of the physical
model (the compressible fluid’s characteristic curve) and of the geometrical model (special network’s
turbine profile) is applied.

PRESENTING THE ANALYZED PHYSICAL AND GEOMETRICAL MODELS

The application of the profile grid theory has an important place in the design and improvement
of the modern turbo machines turbines’. The mathematical models used in the profile grid modern
theory consider the structure and physical characteristics of real fluid-course. To understand the
hydrodynamics of the special network let us consider an axial flow surface around the turbines. In the
domain of the turbine’s blade cylinder-type flux surfaces are created. If such a surface is cut by a blade
and this is projected on a plane, a plane specialized network is obtained, containing a finite number of
blade (obstacles) profiles. To generalize the profile grid theory, the finite numbers of blade profiles are
substituted with infinite ones, where the elements of the blade profiles (obstacles) are repeated
periodically. Bigger number of the turbine blades approximates better the real flux.

Definition 1. A periodic coplanar system of specialized plane obstacles is defined as a plane
specialized network.
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Definition 2. The straight line crossing the collinear point of the specialized plane obstacles, which
creates a A angle with the | length chord is defined as the director line (ax) of the specialized network

(Fig. 1).

LT
Definition 3: The period of the network Z):rel(z g is the quantity that should be used for
moving a profile on the director line in order to achieve a neighboring profile (t - the scale of the
network).
The plane specialized network is adjusted to the z = x + iy coordinating system of a complex space,
where the ox ax is parallel with the specialized plane obstacles. The curves delimiting the specialized
plane obstacles are notated Ly (k € Z ), while the inner area of the L, specialized plane obstacle in the t-

width periodicity zone is Dj, the extern domain is Dy . In the followings, a compressible fluid flux is
analyzed, with V; velocity flux at —o and V, velocity flux +o.

Definition 4: The principal periodical strip D is the extern domain of the profile with L, base,
situated in the strip whose width is t.

Figure 1. The director line of the specialized network
Remark 1: Due to the fact that the hydrodynamic specialized network is physically and

geometrically periodic, it is enough to know in the principal periodical Dy the motion of the

compressible fluid.

Property 1: The motion around the specialized network in the z complex plane is the result from a
source (Q, I'}) placed at -, pointing to another source (Q, T, ) which is placed at +x.

Of course, T =T} —T', —...—is the magnitude of the circulation around L, profile.

Remark 2: Using the kinematical and geometrical parameters, one can calculate the motion’s

hydrodynamic parameters from the following equations [1], [11]:

I ="tsin(A+a;) I =Vtsin(A+ay) r=1,-1I,
O=¢-t-Vicos(A+a;)=¢y-t-V;cos(A+ay) (1)
where V, and V, represents the asymptotic velocity, while a; and «a, the angle closed with these
velocities and the ox ax.
To analyze such a complex physical and geometrical model, two methods are known:

a. Integral equation method or hydrodynamic singularities method. This method was used to develop a
calculus algorithm [10], using the p-analytical complex function theory and the boundary elements
numerical method.

b. Hodographic method [9]: difficult and complex calculation is applied, but the solution gives an
analytical solution.

PRACTICAL USE OF THE APPROXIMATING HODOGRAPH METHOD

In the z(x,y) complex plane of the compressible fluid consider a specialized network with infinite

number of specialized plane obstacles (scaling parameter t, considered angle A).

We consider known the fluid’s velocity at —w: V; =V;-¢'®, while at +x the velocity becomes
I72 = V2 -emz .
The motion of the fluid inside the network is given by the following equations:
e Continuity (Euler equation):

div[p-l_}JzO or aa(p~u)+%(p~v):0 (2)

X
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e The equation of the state of the motion:

C
p=p(p) or L =const, =L (3)
p” cy
e The equation of the irotational motion potential:
-
rot V=0 @_6_u=0 (4)
ox oy

where u=V,, v=V, arethe components of the V velocity, ¢, and c, are special temperature values at
isobar (constant pressure) and izochor (constant temperature) conditions.
From (2) and (4) it can be deduced that in the occupied D region (3) ¢, w € C*(D) which functions
are satisfying the following system of equation:
0 0 0 0 0 0
9@ _Po Yy 9P __ Loy, _C9 |, _C99 (5)
ox p Oy oy p Ox ox oy

where p, represents the null-velocity of D.

Due to the fact, that (5) is not the solution of the linear partial derivative equation system, in the
literature a lot of other linearizing solutions were published [1], [9]. S. A. Tschiaplighin was the first who
proposed to switch the quasi-linear system (5) to a linear equation system, based on the independent
hodographic variables (V, 6 ):

Ve —u—iv or u=Vcosd, v=Vsing (6)

Property 2 [1]: The relation between the physical and hodographic plane can be written by the
following complex variable equation:

o0
2

Property 3 [1]: The description of the compressible fluid’s motion in the (V, &) hodographic plane

is given by the following equation:

dz = (dqo+i&dy/), z=x+iy 7)
el

9 __p o
op  poV oy
(8
20 _(m ¥
oy pV ) op
Property 4 [9]: With the B. Demtchenko function substitution:
v
oc=o0+ ILdV (9)
5 PV
the equation system (8) becomes:
%:8_0" %:_K(V)ﬁ_a (10)
op Ow oy op
where:
2 :
k()= 2 2 (1)
p \pV)y

The hypothesis of S. A. Tschiaplighin was in case of the subsonic motion, by other words the
velocity of the fluid is smaller than half of the sound velocity (V < ¢/2) then K(V) = 1. Starting from this
observation, the approximation of K(V) is:

2 :
K(V)z_ﬂ[p_oj =1 (12)
p \pPV)y
As a result, there exists a fictitious fluid (based on the Tschiaplighin-hypothesis) with the
following compressible law:
2 .
L (&J =1 (13)
p \PV)y

This fluid gives the possibility to substitute the nonlinear characteristic equation (3) with the (3°)
linear characteristic equation:
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1 . *
p=C—+C 3)
P
where the C and C’ constants can be determined based on the used approximation and it reflects the

real physical conditions. In this way, a hodographic approximation method in the (l,pJ plane
Vel

substitutes the (3) isentropic curve with (3).
Property 5 [9]: Choosing the C and C’ constants of the (3") equation three possibilities exist. These
are named as the hodographic equation variants (Fig. 2).
The demonstration of Property 5 was done by S. Popp in 1969 [9]. It resulted that only three
hodographic approximation variant methods exists (Fig. 2):
O The Tschiaplighin-Demtchenko approximation (line nr. 1);
O Kdrmdn-Tschien approximation (line nr. 2);
O Caius lacob approximation (line nr. 3).

Figure 2. The director line of the specialized network

C. C. Lin was the first [6], who has demonstrated in 1949 that in case of a compressible fluid’s flux
around the specialized plane obstacles, the Karmdn-Tschien approximation can be utilized.

Property 6 [9]: Using the Tschiaplighin-type fictitious fluid, the following linear partial equation
system can be obtained:

w_fo w0t )
p oy Oy O

Remark 3: Equation (8") reflects that the w=6+ic complex function is an analytic function of

the f=¢+iy complex variable. The w=6+ic function is the Levi-Civita function of the (¢ ) fictitious

plane’s incompressible fluid, who’s motion complex potential is: f=p+iy .

Theorem 1 [1]: In the hodographic approximation method, the correspondence between the
uncompressible circulational motion from plane (¢) and the subsonic compressible motion from plane

() is given by the following equations:

z:CJh@y§+Cﬂ(§g)i%$ (14)
1 G et V.
;:W+C2|W|—Vi |h(§X+C2 |h(§] (15)
P _Ci _ G 3 Vi
;_ |W| C2|W| Vl |h(é/] C2 |h(§1 (16)
6=0, +argh(¢) (17)

where: V; is magnitude of the uncompressible fluid’s velocity;

i
D, is the fictitious the uncompressible fluid’s density;
C, and G, constants — in case of each approximation variants — are determined by the following
expressions:

Tschiaplighin — Demtchenko approximation variant:

128 Tome X (Year 2012). Fascicule 3. ISSN 1584 — 2673



ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

ST v R R ) o)

b) /s
Ve

where M, = N is the Tschiaplighin-number.
0

Kdrmdn-Tschien approximation variant:

Voo

where M, =—= is the Mach-number.

o0

C. lacob approximation variant:

1
C =% 1+[1—7T_1M§j / (20)

e

1—(1—72_11\45} -

/4 1
—1 o1 -1 )
1—(1—72 Ozj“ 1+(1+72ng -

J. LERAY TRANSPOSITION AND PRACTICAL APPLICATION

To have a bijective transposition between the (z) and (¢) planes (to close the specialized plane
obstacles, with scaling parameter t and considered angle A) the relations of Theorem 1 will be changed
to be valid in case of circulational motion too. In this way, the (z) compressible plane circulational
motion will be equal with an uncompressible, fictitious circulational motion in plane (¢ ) (by using the
(14), (15), (16), (17) equations). This is known as the J. Leroy transposition:

e (1)

For the (<) plane’s canonical region the uncompressible fluid’s flux domain will be chosen around
a unit radius circle. In other words, the principal periodical strip’s ( Dy ) domain conform projection will
be the flux of |¢|=1 unit radius circle.

For univocal transposition it is laid down that the principal periodical strip ( Dy ) is equal with the
|| =1 unit radius circle:

Property 7 [11]: From the Kutta-Zsukovszki hypothesis validation, the R radius circle T circulation is
given by the following equation:

_7
2C;

2

4RtV (R2 —2R cos9+1) R? sin(a; —A—6;)-
: (22)
(RZ—IXR“—ZRZCOSZHO +1) —sin(a; —4—-6,)
Property 8 [11]: The complex potential of the flux around the uncompressible |§| =1 unit radius
circle is given by the following equation:

1
. . +— B
fo)=L M e R Oy " R T 6o R (23)
2z {-R 2 1 2 1
— —

where Q and I physical parameters are given by equation (1).
Remark 4: In equations (22) and (23) the value of R is determined empirical from a table
(according to A considered angle and t/I density — [11], pp. 113, table 1).
Theorem 2 [5]: The shift (slip) of the corresponding blade profile contours of the (z) and (<)
planes according to relation (14) is given by the following equation:
2

ia ia
c1tep !vlie ! ’ c1tep !vzl-e 2 '
T=wy -, O= ‘@, @)= @ (24)

et +c3vik cf +c3v3;
Property 9 [5]: The J. Leray h({) function is determined using the hypothesis of closing the blade
profiles:
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T=wy; —w =0 (25)
Theorem 3 [5]: In case of networks with straight discs (as the result of F. Weinig [8]), the J. Leroy-
type h(&) function has the following expression:

e
i)’
¢ )&

S is the point on the stagnation point’s radius, defined by 9, at a 0.0125-0.15 distance from the circle;
T is the interior point of the basic circle |¢|=1, defined by the relation:

Ci+C, (Vuem‘ )2 =h(—R)[C12 +C22V1?] (27)

Remark 5: Based on the results presented above a corresponding algorithm for practical
application was developed by the authors [3].

It can be confirmed easily that using the method developed in the current paper, the C. C. Lin

method [6], can be obtained (if the C, and C, constants are replaced with the relations of the Karmdn-

Tschien variant).

CONCLUSIONS

The paper presents a generalization of the C. C. Lin variant [6]. In this way, it is capable for given
values of the C, and C, constants to analyze the compressible fluid’s flux through profiles’ network by
using all three possibilities of the known hodographic methods. If the C, and C, constants are
determined by the Kdrmdn-Tschien approximation variant, then the C. C. Lin method is obtained.

The mathematical modeling method can be used in practice even if the network elements are not
blade profiles, but the elements are physically and geometrically fulfilling the hypothesis of a periodic
system.
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