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ABSTRACT: In this paper, the thermal convection in Rivlin-Ericksen elastico-viscous rotating fluid permeated with
suspended particles (fine dust) in the presence of magnetic field and variable gravity field in porous medium is
considered. By applying normal mode analysis method, the dispersion relation has been derived and solved
numerically. It is observed that the rotation, magnetic field, gravity field, suspended particles and viscoelasticity
introduce oscillatory modes. For stationary convection, the rotation has stabilizing effect and suspended particles
are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or
destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the
absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect
under certain conditions. The effect of rotation, suspended particles .magnetic field and medium permeability has
also been shown graphically.
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INTRODUCTION

A detailed account of the thermal instability of a Newtonian fluid, under varying assumptions of
hydrodynamics and hydromagnetics has been given by Chandrasekhar [3]. Chandra [2] observed a
contradiction between the theory and experiment for the onset of convection in fluids heated from
below. He performed the experiment in an air layer and found that the instability depended on the
depth of the layer. A Benard-type cellular convection with the fluid descending at a cell centre was
observed when the predicted gradients were imposed for layers deeper than 10 mm. A convection
which was different in character from that in deeper layers occurred at much lower gradients than
predicted if the layer depth was less than 7 mm, and called this motion, “Columnar instability”. He
added an aerosol to mark the flow pattern Bhatia and Steiner [1] have studied the thermal instability of
a Maxwellian visco-elastic fluid in the presence of magnetic field while the thermal convection in
Oldroydian visco-elastic fluid has been considered by Sharma [15].

The medium has been considered to be non-porous in all the above studies. Lapwood [7] has
studied the convective flow in a porous medium using linearized stability theory. Scanlon and Segel [14]
have considered the effect of suspended particles on the onset of Be’nard convection and found that
the critical Rayleigh number was reduced solely because the heat capacity of the pure gas was
supplemented by the particles. The suspended particles were thus found to destabilize the layer.

Sharma and Sunil [16] have studied the thermal instability of an Oldroydian viscoelastic fluid with
suspended particles in hydromantic in a porous medium. There are many elastico-viscous fluids that
cannot be characterized by Maxwell’s constitutive relations or Oldroyd’s constitutive relations. One
such class of fluids is Rivlin-Ericksen elastico-viscous fluid [13]. Srivastava and Singh (1988) have studied
the unsteady flow of a dusty elastico-viscous Rivlin-Ericksen fluid through channels of different cross-
sections in the presence of time-dependent pressure gradient. Garg et. al. [4] has studied the rectilinear
oscillations of a sphere along its diameter in conducting dusty Rivlin-Ericksen fluid in the presence of
magnetic field.

Stommel and Fedorov [20] and Linden [8] have remarked that the length scalar characteristic of
double diffusive convecting layers in the ocean may be sufficiently large that the Earth’s rotation might
be important in their formation. Moreover, the rotation of the Earth distorts the boundaries of a
hexagonal convection cell in a fluid through a porous medium and the distortion plays an important role
in the extraction of energy in the geothermal regions. The problem of thermal instability of a fluid in a
porous medium is of importance in geophysics, soil sciences, ground water hydrology and astrophysics.
The scientific importance of the field has also increased because hydrothermal circulation is the
dominant heat transfer mechanism in the development of young oceanic crust (Lister, [9]).
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Thermal instability of a fluid layer under variable gravitational field heated from below or above is
investigated analytically by Pradhan and Samal [10]. Although the gravity field of the Earth is varying
with height from its surface, we usually neglect this variation for laboratory purposes and treat the field
as constant. However, this may not the case for large scale flows in the ocean, the atmosphere or the
mantle. It can become imperative to consider gravity as a quantity varying with distance from the
centre.

Sharma and Rana [17] have studied Thermal instability of a Walters’ (Model B') elastico-viscous in
the presence of variable gravity field and rotation in porous medium. Sharma and Rana [18] have also
studied the thermosolutal instability of Rivlin-Ericksen rotating fluid in the presence of magnetic field
and variable gravity field in porous medium. Kumar and Sharma [6] have studied the effect of
suspended particles on thermal convection in viscoelastic fluid in hydromagnetics whereas Rana and
Kumar [12] studied thermal instability of Rivlin-Ericksen Elastico-Viscous rotating fluid permitted with
suspended particles and variable gravity field in porous medium. Recently, Rana [11] studied thermal
instability of compressible Rivlin-Ericksen elastico-viscous rotating fluid permeated with suspended dust
particles in porous medium

Keeping in mind the importance in various applications mentioned above, my interest, in the
present paper is to study the thermal convection in Rivlin-Ericksen elastico-viscous rotating fluid
permitted with suspended particles in the presence of magnetic field and variable field in porous
medium.

FORMULATION OF THE PROBLEM

Consider an infinite horizontal layer of an electrically conducting Rivlin-Ericksen elastico-viscous
fluid of depth d in a porous medium bounded by the planes z = 0 and z = d in an isotropic and
homogeneous medium of porosity € and permeability k, which is acted upon by a uniform rotation
z o, o, ©), uniform vertical magnetic field H(o,0,H)

and variable gravity g(o, o, -g), g = Ago, go(>0) is the
value of g at z = 0 and A can positive or negative as

z-4 g e00-0) gravity increases or decreases upward from its value
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o © . H=OHl . Pas  steqdy adverse temperature gradientﬂ:(‘”j is
et t Attt dz

Heated from below maintained. The character of equilibrium of this initial
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Y is slightly disturbed and then following its further

Figure 1. Schematic sketch of physical situation  evolution. The hydromagnetic equations in porous
medium [Chandrasekhar (1981), Joseph (1976), Rivlin and Ericksen (1955), relevant to the problem are
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V.H=0 (4)
ei—’szx(ﬁxﬁ)—#eanﬁ. (5)
where g —¢ 4+(1- e)[ps_cs] P5,Cs,05,C; denote the density and heat capacity of solid (porous) matrix

pocf
and fluid respectively. The equation of state is

p:po[1_a(T_To)]! (6)
where the suffix zero refers to values at the reference level z = 0. Here p,u,0,p,<,T,u,,,q(0,0,0) and
H(o,0,H) stand for density, kinematic viscosity, kinematic viscoelasticity, pressure, medium porosity,
temperature, magnetic permeability, thermal coefficient of expansion, velocity of the fluid and
magnetic field. Hereq,(X,t) and N(X,t) denote the velocity and number density of the particles
respectively, K =6zpvn, where n is particle radius, is the Stokes drag coefficient,

qq=(Lr,s)andx =(x,y,z).
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If mN is the mass of particles per unit volume, then the equations of motion and continuity for the
particles are

mN[aat aq V)qd}zK'N(q—qd), 7)

eg—t+v.(qu):o. (8

The presence of particles adds an extra force term proportional to the velocity difference
between particles and fluid and appears in the equation of motion (1). Since the force exerted by the
fluid on the particles is equal and opposite to that exerted by the particles on the fluid, there must be an
extra force term, equal in magnitude but opposite in sign, in the equations of motion for the particles
(7). The buoyancy force on the particles is neglected. Interparticles reactions are not considered either
since we assume that the distance between the particles are quite large compared with their diameters.
These assumptions have been used in writing the equations of motion (7) for the particles.

The initial state of the system is taken to be quiescent layer (no settling) with a uniform particle
distribution number. The initial state is

q=(0,0,0),q4 =(0,0,0), T=—pz+T,,p=p,(1+afz),N =N, aconstant. (9)
THE PERTURBATION EQUATIONS
Let q(u,v,w), qu(lr,s), S, dp and Jp denote, respectively, the perturbations in fluid velocity
q(0,0,0), the perturbation in particle velocity q4(0,0,0), temperature T, pressure p and density p.
The change in density 6p caused by perturbation 9 temperature is given by

op=—ap, 0. (10)
The linearized perturbation equations governing the motion of fluids are
1.0q 1 — 1 0 . 2. = -\ M =) =
——1-__—_Vép- 9-— — —lgxQ - xh xH, 1"
e ot p, p-ga k, vy ot Q+e(q )+poe q)+47tpo@ ) ()
v.g=o, (12)
m 0 -
——+1 =q, 1
(K o jCId q (13)
06 2
(E+be)§:ﬂ(w+bs)+1<’7 6, (14)
Vh=0 (15)
GZ—T:(H.V)Q+617V29, (16)
where b= , and w, s, are the vertical fluid and particles velocity.
po f
In the Cartesian form, equations (11)-(16) can be expressed as
1(m8 jau 1(m6 ] ( 0 )( '6)
—| 1| == ——+1|=—(]) )—— el CRt il

mN ou u.H (ahX ahzj z(m 0 j
- —+ - +—| ——+1|Qyv,
ep, 0t 4mp,\ Oz ox e\ K ot

1(ma jav 1(m6 j ( 0 j( ,a)
— =t |—=— = —(dp)- ———+1 v+v —|v
el K ot ot P, \K Ot K ot ot (18)

oh
_ mN 6v+,ueH y O0h, +i(ﬂi+1jgu,
ep, Ot 4mp,\ 0z oy K 0o

1(m 0 ow 1 (m 0 1(m 0 ' 0
—(—,—+1]—:——(—,—+1j—(5p)——(—,—+1j(u+u —)w
e\k ot Jot  p,\k ot oz k,\K ot ot (19)

oh
_ mN 6_u+ HH y 0h, +gad,
ep, Ot 4mp,\ Ox oy
@+Q+6—W:o; (20)
ox oy 0Oz
06 5
(E+b E)E:ﬂ(w+bs)+lcv 0, (21)
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eah _H@+ nvh,, (22)
ot 0z
oh ou
—L =H—+enV’h,, 2
ot oz STy (23)
oh ou
Z=H—+enVh, 2
e =Ho renvh, (24)
oh, ¢oh, oh
Lp—Li—2=p, (25)
ox oy oz

Operating equation (17) and (18) byai and § respectively, adding and using equation (22)-(25),
X y

we get

1(m6 )6(6wj 1(m6 ) , 0?7 1(m6 )( 'ﬁj(aw]
+1 -— 1| V- op——| ——+1{|v+0 — || —
K ot ot\ 0z P, \K 0Ot 0z’ k,\K ot ot )\ oz (26)

_ﬂi(a_vvj+ﬂvzhz _i(miﬂ)gg,
e p, Ot\ 0z 47p ot

ov ou . -
where { =——— is the z-component of vorticity.

Ox oy

Operating equation (19) and (26) by (vz _aZJ and ai respectively and adding to eliminate op
0z’ z

between equations (19) and (26), we get

l(m 0 +1)i(vzw):_L(ﬂi+,j(U+U a)v wHgl — 0 a (m,iﬂjae
K ot ot k,\K ot 0 ox’? 8y2 K ot (27)
— mN i V2 +M[mi+1)i(vzhz)_i(ﬂi_’_»ljga_g”
€ p, Ot 4mp, \K Ot ot e\K ot 0z
2
where vzza_ .
aXZ y2 ZZ

Operating equation (17) and (18) by —ai and ai respectively and adding, we get
y X

I m o o 1 mo 0 mN o wpuH m o aG 2 mod ow
— ——+] —=— ——+] vt (-——+ ——+1 —+— ——+1 0—, (28)
e K ot ot k, K ot ot~ e p, 0t 4mp, K Ot o0 e K ot 0z
oh, oh .
where & = 8__6_X is the z-component of current density.
X y

Operating equations (22) and (23) by—ai and ai respectively and adding, we get
y X

05 _ 0
< =H P +enVie. (29)

DISPERSION RELATION AND DISCUSSION
Analyzing the disturbances into normal modes, we assume that the perturbation quantities have
X, y and t dependence of the form

[W, s, €,§,hz,§]: [W(z),S(z), @(z),Z(z),K(z)]exp(ikX +iky +nt), (30)
Where k, and k, are the wave numbers in the x and y directions, k = (kx2 +k,’ " s the resultant wave

number and n is the frequency of the harmonic disturbance, which is, in general, a complex constant.
Using expression (30) in (27)-(29), (24) and (21) become

2 2 2
nd e lwo=—gkta0 - (pron) 4k jw - M " lw
eldz? k, dz? [m ) dz?
€ P, ?n-f"l

20 dz ,ueH d(d’ ke lk
€ dz 4mp, dz \ dz? ’
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QZ:—L(U+u'n)/V—LZ—£ﬂ+ #eH iDX, (32)
; ( ) € dz 4mp, dz
€ po| —n+1
dz d’
nX=H—+ —k? |X,
< dz eﬂ(dzz J G3)
enK:Hdl+e77(d —kzjK, (34)
dz dz’®
dZ
(E+be)n@:ﬂ(w+b5)+/{d - —kzj@, (35)
z
Equations (31) — (35) in non-dimensional form, become
2 42 3
g[w M ]+1+F6}(D2—a2)/\/+gaa d @+2'Qd DZ - pHd (Dz—az))K:o, (36)
€ 1+7,0 P, v €V 4750,0
I:Z(H- i ]+1+FJ}Z:[2Qd)DW—ﬂDX; (37)
S 1+7,0 P, ev 47p L
(Dz -a’ - pp)x =—(H—dJDz, (38)
€n
s Hd
(b*-a —pp‘)(z—[—JDW, (39)
€n
0 -at-epolo-{ 2 £, (o)
Kk \1+7,0
nd’ m 0 v k, .
where we have put a=kd,oc= ,7=—,7,=—,F=—, E,=E+be, B = b+1, Pb=—1, is the
v K d? d’ d’

. . ; . v . v . .
dimensionless medium permeability, p,=—, is the thermal Prandtl number, p, =— , is the magnetic
K n

Prandt! number and D" = ddi and the superscript * is suppressed. Applying the operator (D2 —a’ - pza)
Zz

to the equation (37) to eliminate X between equations (37) and (38), we get
a M 1+Fo |(, 5 Qn: :ngz N . 41
{Haj . }(D . ng)+ep}w 298" 62 g2, (41

Eliminating K, © and Z between equations (36) - (41), we obtain

{|:G_[1+ M ]+1+FU:|(D2—a2XD2—az—pzoXDz—az—Lp,o)}W

S 1+7,0 P,

+ Ra 21[%)(02—&—%0)/\/ +2—(D2—G2XD2—GZ—E,p,O')W “
@ -at-pof -at-Epo)
= € D’W =o,
|:Z[1+ 1+Af1o_ J+ 1+PTO-:|(D2—a2—p2cr)+ Z—D2
g, apd* pHd

where: R= , is the thermal Rayleigh number, Q=

VK 4mp,on

, is the Chandrasekhar number and

5 2
Ta :(2Qd J , is the Taylor number.
v

Here we assume that the temperature at the boundaries is kept fixed, the fluid layer is confined
between two boundaries and adjoining medium is electrically non conducting. The boundary conditions
appropriate to the problem are [Chandrasekhar, (1981); Veronis, (1965)]

W=D’W=DZ=0=0 datz=0and1 (43)
and the components of h are continuous. Since the components of the magnetic field are continuous
and the tangential components are zero outside the fluid, we have
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DK =0, (44)
on the boundaries. Using the boundary conditions (4.14) and (4.15), we can show that all the even order
derivatives of W must vanish for z = 0 and z = 1 and hence, the proper solution of equation (4.13)
characterizing the lowest mode is

W =W,sinzz; W, isa constant. (45)
Substituting equation (45 in (42), we obtain the dispersion relation
io M 1+ Frlic 1+1,7%0
Rxi= —L I+ + L (1+x)U+x+E,pjio,) ———+
Ix 1+1,7’io, P ( x)( * Iplmj) B+t,7’io,
) . (46)
+—(1+x)(1+x+E,p,ia,) > >
€ B+1,m%io, io, 1 M 1+ Fr’io, B+t,wio,
L 1+
€ 1+1,7’io, P
R T a’ . o
where R1:_!TA :—A,X:—,’O-1:_,P:ﬂ'ZPI’Q1:£.
g4 T e = e 4

Equation (46) is required dispersion relation accounting for the effect of suspended particles,
magnetic field, medium permeability, variable gravity field, rotation on thermal convection in Rivlin-
Ericksen elastico-viscous fluid in porous medium.

STABILITY OF THE SYSTEM AND OSCILLATORY MODES

Here we examine the possibility of oscillatory modes, if any, in Rivlin-Ericksen elastico-viscous fluid
due to the presence of suspended parttcles, rotation, magnetic field, viscoelasticity and variable gravity
field. Multiply equation (36) by W the complex conjugate of W, integrating over the range of z and
making use of equations (37)-(70) with the help of boundary conditions (43) and (44), we obtain

o M 1+ Fo uen I+t . aa’ig,k 1+1,0 .
S I 1+T/O' " 1)1 11 i 477:p0 B+T/O' (IZ +p20- Ij)- Dﬂ B+T/0' (]4 +E1p]0' 15) (47)
, o M 1+ Fo" u,€ nd’ I+t,0 N
e e R Ay Frel s (1, + p,o'1,)=0,
where
11=I;0DW|Z+a2|W|2)dz,IZ:I;( 2+a2K2+2a2|DK|2jdz,13—IQDK| +a’|K’ )dz I, = QD@| +a’le)’ )d

I, =I01(|D®|2+a2|®|2)dz, I :J:Q@r)dz,lé ([z| bz, 1, = [ (ox¢ +a|x bz, 1, j;ﬂxr)dz

The integral part |-l are all positive definite. Putting o =io; in equation (5.1), where o; is real
and equating the imaginary parts, we obtain

1 M F
—) 1+ —— |+ — |, - d’I
[e[ 1+z',i0',.J P,}(1 4)

r,(B-1)
* 2 2 2 ,2
_,ueeiy[1+r10' ] B +7,70,

470 , B+r7,0 B+r7,°0,°
+ B? + 7 %20 .2 pl’B =0,

1 1

2 2 2
+ a9 Ag K r,(B 1) I+ B+z’120',»2 Ep,i, |d°
vp B +r1,’0;’ B2 +17 %0,

2 _ 2'2
+yeend[ r,(B 1) ]’6+[B+r1zo'[2]

(48)

4o B’ +17,%ic B’ +r17,70

1 i

Equation (48) implies that o,=0 or o, #0 which mean that modes may be non oscillatory or
oscillatory. The oscillatory modes introduced due to presence of rotation, magnetic field, suspended
particles, viscoelasticity and variable gravity field.

THE STATIONARY CONVECTION AND DISCUSSION
For stationary convection putting o = 0, in equation (46) reduces it to

X[ 14X Q1 T, (1+x)P
LA S ,
T IxB| P {e(1+x)+Q,P}e

(49)

1
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which expresses the modified Rayleigh number R, as a function of the dimensionless wave number x and
the parametersT, , B, P, O, and Rivlin-Ericksen elastico-viscous fluid behave like an ordinary Newtonian

fluid since elastico-viscous parameter F vanishes with o.
To study the effects of suspended particles, rotation and medium permeability, we examine the

behavior ofﬂ,ﬁ,ﬁ a
dB "dT, "dQ,

nd G;F;’ analytically. Equation yields

dR, _1+x [1+x Q, T, (1+x)P (50)
dB axB*| P e {e(1+x)+QpPle|

which is negative implying thereby that the effect of suspended particles is to destabilize the system
when the gravity increases upward from its value g, (i.e., )0 ). Also in fig. 2, R, decreases with the
increase in suspended particles parameter B. Thus suspended particles have destabilizing effect, which
clearly verifies the result numerically. This destabilizing effect is an agreement of the earlier work of
Scanlon and Segel [14] and Rana [11]. From equation (49), we get

dR, 1+x (1+x)P
dTA1  xB {{e (1+x)+Q,P}e} 1)

which shows that rotation has stabilizing effect on the system when gravity increases upwards from its
value g, (i.e., )0 ). which is an agreement with the result derived by Sharma and Rana [17] and Rana
[11]. Also in fig. 3, R1 increases with the increase in T, . Thus rotation has stabilizing effect, which clearly

verifies the result numerically.
70 4

80 -

60 70
50 | 60 1 0—"’/
40 - 7 =0 1
& 30 | ——3=0.2 = 20 -_’-___-_’-———l ——x=0.2
20 | \.\.\.\“ —W—x=0.5 30 1 —m—x=0.5
20
10 | x=0.8 o x=0.8
0 ! ! ! ! 0] T T T 1
3 & 8 12 15 5 10 15 20 25
B— Tar~>
Fig.2. Variation of Rayleigh number R1 with suspended Fig.3. Variation of Rayleigh number R1 with rotation T,
particles for# =2, Ta, =5,Q, =10,6=0.2,P=0.2 £ forB=3, A=2,Q,=10,€=0.2,P=0.2, Q,.10, for
fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. fixed wave numbers x = 0.2, x = 0.5 and x = 0.8.
From equation (49), we get
dR, 1+x| 1 T, (1+x)P
= - 5 ’ (52)
dQ, AxB|le {e(1+x)+QpP} e

which implies that magnetic field stabilizes the system, if

{e(1+x)+Q,P}")T, (1+x)P?
and destabilizes the system, if

{E(+x)+Q P (T, (1+x)P?
when gravity increases upwards from its value g, (i.e., )0 ), which is an agreement with the result
derived by Sharma and Rana [18], Bhatia and Stiener [1] and Sharma and Sunil [16]. Also in fig. 4, R,
increases/decreases with the increase in magnetic field parameter Q, Hence, magnetic field has
stabilizing/destabilizing effects, which clearly verify the result numerically.

In the absence of rotation, magnetic field has destabilizing effect on the system, when gravity

increases upwards from its value g, (i.e., 4)0 ).
It is evident from equation (49) that

dR, 1+x| 1 T, (1+x) }

==z ) 5

dP AxB| P> {e(1+x)+QpP} € 3)

From equation (53), we observe that medium permeability has destabilizing effect
when {e(1+x)+QPf (T, (1+x)P* and medium permeability has a stabilizing effect when

{e(1+x)+Q,P}*)T, (1+x)P?, when gravity increases upwards from its value g, (i.e., 4)0 ).
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a0 | 1 15 -
rftso ——x=0.2 P~ 0 ——x =02
)l ——x=05 ] .\ - ——x=05
207 x=08 5 - x=08
10
o Q
1 5 1 15 16 1.7 2 3 5 10 -1 = 8 2 15 2
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Fig.4. Variation of Rayleigh number R1 with magnetic Fig.5. Variation of Rayleigh number Rt with medium
field Q,for # =2,Ta, =5,Q,=10,e= 0.2,P =0.2 B permeability P for B =3, A=2,T, =5,Q,=10,€=0.2,
=3, for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8. for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8.

Also in fig. 5, R1 increase/decrease with the increase in medium permeability parameter P. Hence,
medium permeability has destabilizing/stabilizing effects, which clearly verify the result numerically.
This destabilizing effect is an agreement of the earlier work of Scanlon and Segel [14], Sharma and Rana
[17], Sharma [15] and Rana [11].

NOMENCLATURE & GREEK SYMBOLS

qg - Velocity of fluid k - Wave number of disturbance k - Thermal diffusitivity

qd - Velocity of suspended particles kx, ky - Wave numbers in x and y directions  a- Thermal coefficient of expansion

p - Pressure p1- Thermal Prandtl number 6 - Adverse temperature gradient

g - Gravitational acceleration vector PI - Dimensionless medium permeability 9 - Perturbation in temperature

g - Gravitational acceleration € - Medium porosity n - Growth rate of the disturbance

k, - Medium permeability p - Fluid density 8 - Perturbation in respective

T - Temperature u - Fluid viscosity physical quantity

t - Time coordinate A - Fluid viscoelasticity { - Z-component of vorticity

cf - Heat capacity of fluid v - Kinematic viscosity Q - Rotation vector having

Cpt - Heat capacity of particles V - Kinematic viscoelasticity components (0, 0, Q)

mN - Mass of particle per unit volume n - Particle radius Le - Magnetic permeability

REFERENCES

[1.] Bhatia, P. K. and Steiner, J. M., Thermal instability of fluid layer in Hydromagnetics, J. Math. Anal. Appl., Vol. 41, pp. 271-
289, 1973.

Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York, 1981.
Garg, A., Srivastava, R. K., and Singh, K. K., Rectilinear oscillations of a sphere along its diameter in conducting dusty
Rivlin-Ericksen fluid in the presence of magnetic field, Proc. Nat. Acad. Sci. INDIA, Vol. 64, pp. 355-372, 1994.

[5.] Joseph, D. D. (1976). Stability of fluid motions, Springer-Verlag Berlin, Heidelberg and New York, Vol. 28, I and Il. Pp. 282-
296, pp. 274-289.

[6.] Kumar, S. and Sharma, V., Effect of suspended particles on thermal convection in viscoelastic fluid in hydromagnetics,
Int. J. of Math., Vol. 1, pp. 1-15, 2009.

7.] Lapwood, E. R., Convection of da fluid in a porous medium, Proc. Camb. Phil. Soc., Vol. 44, pp. 508-519, 1948.

8.] Linden, P. F., Salt fingers in a steady shear flow, Geophysics Fluid Dynamics, Vol. 6, pp. 1-27, 1974,

9. Lister, C. R. B., On the thermal balance of a mid ocean ridge, Geophysics, J. Roy. Astr. Soc., Vol..26, pp. 515-535, 1972.

10.] Pradhan, G. K. and Samal, P. C., Thermal instability of a fluid layer under variable body forces, J. Math. Anal. Appl., Vol. 122,
pp. 487-498, 1987.

[11.] Rana, G. C., Thermal instability of compressible Rivlin-Ericksen elastico-viscous rotating fluid permitted with suspended
dust particles in porous medium, IJAMM, Vol. 8, pp. 97-110, 2011.

[12.] Rana, G. C. and Kumar, S., Thermal instability of Rivlin-Ericksen Elastico-Viscous rotating fluid permitted with suspended
particles and variable gravity field in porous medium, Studia Geotechnica et Mechanica POLAND, Vol. XXXII, pp. 39-54,
2010.

[13.] Rivlin, R. S. and Ericksen, J. L., Stress deformation relations for isotropic materials, J. Rational Mech. Anal., Vol. 4, 323-334,

Ei Chandra, K., Instability of fluids heated from below, Proc. Roy. Soc. London, Vol. A164, pp. 231-242, 1938.
4

1955.
14.] Scanlon, J. W. and Segel, L. A., Effect of suspended particles on onset of Be’nard convection, Vol. 16, pp. 1573-78, 1973.
15.] Sharma, R. C., Thermal instability of viscoelastic fluid in hydromagnetics, Acta Physica Hungarica, Vol. 38, pp. 293-298,

1975.

[16.] Sharma, R. C. and Sunil, Thermal instability of an Oldroydian viscoelastic fluid with suspended particles in hydromagnetics
in porous medium, J. of Polymer Plastic Technology and Engineering,Vol. 33, pp. 323-339, 1994.

[17.] Sharma, V. and Rang, G. C., Thermal instability of a Walters’ (Model B') elastico-viscous fluid in the presence of variable
gravity field and rotation in porous medium, J. Non-Equilib. Thermodyn.,Vol. 26, pp. 31-40, 2001.

[18.] Sharma, V. and Rang, G. C., Thermosolutal instability of a Walters’ (Model B' ) elastico-viscous rotating fluid in the
presence of magnetic field and variable gravity field in porous medium, Proc. Nat. Acad. Sci. INDIA, Vol. 73, pp. 93-111,
2003.

[19.] Srivastava, R. K. and Singh, K. K., Unsteady flow of a dusty elastic-viscous Rivlin-Ericksen fluid through channels of
different cross-sections in the presence of time-dependent pressure gradient, Bull. Cal. Math. Soc., Vol. 80, pp. 286-308,
1988.

[20.] Stomel, H. and Fedorov, K. N., Small scale structure in temperature and salinity near Timor and Mindanao, Tellus,Vol. 19,
pp- 306-325, 1967.

[21.] Veronis, G., On finite amplitude instability in thermohaline convection, J. Marine Res., Vol. 23, pp. 1-17, 1967.

copyright © UNIVERSITY POLITEHNICA TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA,
5, REVOLUTIEI, 331128, HUNEDOARA, ROMANIA
http://annals.fih.upt.ro

362 Tome X (Year 2012). Fascicule 3. ISSN 1584 — 2673



