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ABSTRACT: In this article wave propagation in thin, flat, homogeneous thermoelastic plate of finite width and
infinite length is investigated on the basis of an exact theory in the context of generalized theories of
thermoelasticity. Frequency equations applicable to LS, GN models and classical theory are derived to investigate
dispersion behavior of thermoelastic waves by invoking appropriate boundary conditions. Relevant results of
previous investigations are deduced as special cases. The effects of the thermo-mechanical coupling, thermal
relaxation times of the plate on the dispersion behavior are examined. Finally numerical solution of the frequency
equation is carried out to present free wave dispersion curves for an aluminum plate.
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INTRODUCTION

Study of thermally induced disturbances in thermoelastic plates is of interest for ultrasonic
nondestructive evaluation of defects, materials characterization, and for dynamic response studies.
Hence, the study of impact and wave propagation in thin plates that are weight-sensitive and depend
upon temperature field, become very important.

The theory to include the effect of temperature change, known as the theory of thermoelasticity
has been well established. Due to the coupling of thermal and strain fields, the theory is known as
coupled theory of thermoelasticity. The basic governing equations of thermoelasticity in the usual
framework of linear coupled thermoelasticity consist of the wave type (hyperbolic) equations of motion
and the diffusion type (parabolic) equation of heat conduction. It is observed that a part of the solution
of the energy equation tends to infinity. This implies that if an isotropic homogeneous elastic medium is
subjected to thermal or mechanical disturbances, the effects in the temperature and displacement fields
are felt at an infinite distance from the source of disturbance instantaneously. This implies that a part of
the solution has an infinite velocity of propagation, which is physically impossible. To remedy this
physically unrealistic contradiction, new theories based on a modified Fourier law of heat conduction or
the incorporation of either an entropy production inequality or temperature rate-dependent
constitutive variables were proposed Chandrasekharaiah[1], Ignaczak [2], Jakubowska [3]. Some
researchers such as Kaliski [4], Lord and Shulman [5], Fox [6], Gurtin and Pipkin [7], Meixner[8] and
Hetnarski and Ignaczak [9] have introduced the time needed for acceleration of the heat flow in the
heat conduction equation along with the coupling between the temperature and strain fields. This new
theory which is named as the ‘Generalized Theory of thermoelasticity’ eliminates the paradox of an
infinite velocity of propagation and is based upon the more general linear functional relationship
between the heat flow and the temperature gradients.

Of all the non-classical theories, the Lord and Shulman [5] model is in popular use engineering
applications. The LS model introduces a single time constant to dictate the relaxation of thermal
propagation, as well as the rate of change strain rate and the rate of change of heat generation.
Ackerman et al.[10], Nayfeh and Nasser [11] have investigated the Maxwell’s surface waves propagating
along a half-space consisting of linearly elastic materials that conduct heat.

The theory of thermoelasticity without energy dissipation, recently proposed by Green and
Naghdi [12], is one such theory (Here in after called GN theory). The discussion presented in Green and
Naghdi includes the derivation of a complete set of governing equations of the linearized version of the
theory for homogeneous and isotropic materials in terms of displacement and temperature fields and a
proof of the uniqueness of the solution of the corresponding initial mixed boundary value problem. The
unigueness of the solution for an initial boundary value problem in this theory, formulated in terms of
stress and energy-flux, has been established in Chandrasekharaiah [13].

Verma and Hasebe [14] discussed the propagation of thermoelastic vibrations in plates in the
context of  generalized theories of thermoelasticity. Mondal [15] obtained the frequency equations,
corresponding to a thermoelastic plane wave in an infinite thermoelastic plate immersed in an infinite
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liquid which is kept at uniform temperature, using thermoelastic potential, for symmetric and anti-
symmetric vibrations about the vertical axis, taking into account the thermal relaxations.

In this paper wave propagation in arbitrary thin, flat, homogeneous thermoelastic plate of finite
width and infinite length is investigated on the basis of an exact theory, in the context of generalized
theories [5, 12] of thermoelasticity. Frequency equations applicable to LS, GN models and classical theory
are derived to investigate dispersion behavior of thermoelastic waves by invoking appropriate
boundary conditions. Relevant results of previous investigations are deduced as special cases. The
effects of the thermo-mechanical coupling, the relaxation times of the plate on the dispersion behavior
are examined. Finally numerical solution of the frequency equation is carried out to present free wave
dispersion curves for an aluminum plate.

BAsIC GOVERNING EQUATIONS AND FORMULATION

Consider an infinite thermoelastic thin plate having thickness d, initially at uniform temperature
To such that its normal is aligned with xjaxis of a reference Cartesian co-ordinate
systemx, = (x,,x,,x;). The bottom surface of the plate is chosen to coincide with x—x plane. The
relations governing the plate are given as follows.

(a) The strain-displacement relations
S L (10)
T2\ 0x, Ox
(b) The stress-strain temperature relations
c,;,=A10,ey +2ue; —yTo,, (1b)

where O, is the Kronecker delta.
(c) The governing field equations of motion and heat conduction in the context of generalized theory of
thermoelasticity [5] are given by

o’u, 0y, o’u, Ou o’u

—L+—L+(A+ L—2 |= L+yT (20)
“ [axf el A P

82u3 82u3 o’u 0*u o’u

+—2 |+ (A + L+—3|= 24+yT (2b)
a ( o "o T oo T TP T
azT + azT —oC a_T+ T az_T
oxt o) Pl T 3)

Ou, 0 ,Ou, o 0’u, o ( o%u,
= — +7,4— +—
=77 { G ) 10{6x1 PR RPY

where y =(3A+2u)a,, A and u are the Lame’s parameters for isothermal deformations; «, is the
coefficient of thermal expansion; p , C. and z, are respectively the density, the specific heat at constant
strain and the thermal relaxation time; K is thermal conductivity of the medium.
ANALYSIS

If we now identify the plane of incidence to be the x,x, plane, we propose a solution to egs. (2)
and (3) for the displacement u.,/ =1, 3 and temperature T in the absence of body forces in the form

(u1su3sT):(U1,U3,U)€i5(x‘+"‘x3*€l) (4)
where &is the wave number , c is the phase velocity (= o/ &) wis the circular frequency, ais the ratio of

the x; and x, wave numbers.U, and U (j = 1, 3 ) are the displacement amplitudes: and i=-1 .
Substituting eq. (4) into egs. (2) and (3), we obtain a characteristic equation relating a to c.

a°+Ba’ +B,0’ +B, =0 (5)
where B =3-¢° +r(1+gl)é’2—§—
C2
- {(3_2;2)+ 20 (14)¢? —744}—§2{(f—g”)+(1+g])r§2}L
3
={(1—§2)+r(1+gl)§2_r§4}{1—§—} (6)
CZ
_ 7T, is a thermoelastic coupling constant; and
U pC(A+2u)
2
T= TO+— y &7 Y L S — - 7)

(A+2p) T (A+2w)
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This equation admits six solutions for « (having the propertiesa, =-a, ,a, =-a;, o,
and by using superposition results, the displacements and temperature are as follows:

6
u, o= Z qj(f)els‘azmelf(xrct)Af
r=1

6
T - ; e RV A

where 4., = 1,0=12..6

= — _l =
q3(/) ag,q3(3) 43 ¢ 1.5

q ="DBmy, m = 1,3,5

3(m+1)
sots? C.(1+2u)
0,=, 117  (l+a w=—-"""1'0,=0,0=1,5
¢ (1-‘1—0!(,2 _z_wlé,z)( zqz(z))r 1 K y U3 ’
0,.,=0, . m =1,3,5.
The stresses and temperature gradient are

6
_ ioyxy i (x;—ct)
O = % Tn€ te A

6 . .
oT _ Z Qgezzfa[)@ez(f(xl—ct)A[
Oxy (=1
al -1
where Koy =20, ”1(3>=¥ ¢ =1,5
3
Nimety = Nmy » m = 1,3,5

Py =[{E Je, = 23]

By = 24, T3y =Ty 5 B3m+y =~ B3y, m = 1,3,5.
Q,=ia, (=15, 2,=0
Q.. =0 m =1,3,5
With egs. (8) and (9), we have

u. =u
/ jce)

T =Te*t™)

eié(xl—ct) ,

With egs. (13) and (14) , we have

— i&(x;—ct
O3 =0 ;3¢ t ), =13
oT _ OT  itie-cr)
Ox,  Ox,
6
_ ila,x
where U :qu(()eé: 34,
=1
g J Sa)x
T=)0,""4,
/=1
: S
— Eax:
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(=1
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Egs. (22)-(25) can be expressed by the following matrix form

o)-(e ®)x) 09

where S(xs) :{513553376_T}1 (27)
ox;

D(x3):{b73nﬁ3af}9; (28)

A1 :{AI’AZ’A3}' (29)

Az = {A4’A57A6}’ (30)

and F, are 3x3 matrices j = 1,2,3,4.
On the upper and the bottom surfaces of the plate, eq. (26) can be expressed as follows:

- On the lower surface: S (P BfA (31)
D), (p P)lA,
- On the upper surface: (SJ :(Ql QZJ{A.] (32)
D xy=d Q3 Q4 A2
where P =F at x,=0 and Q,=F, atx,=d j=1,2,3.4. (33)

Egs. (31) and (32) can now be used to present solutions for a variety of situations. In the first we
consider a free plate in the context of generalized thermoelasticity.
STRESS-FREE BOUNDARY

If the boundary conditions are that the stresses on the surfaces of the plate vanish i.e. plate is free
of stress, then from (27) , we have

S(0)=0, (34)
Sd)=0 (35)
According to egs. (34) and (31), A, can be expressedby A, .
A, = _(Pz)_IPIAl : (36)
On substituting eq. (36) into eq. (32), S(d)and D(d) can be expressed by A, .
S(d)=AA, (37)
D(d) = AdAl ’ (38)
where A, =Q,-Q,(P)'P, (39)
A, =Q, _Q4(P2)71P1 . (40)
With the boundary condition (35), we have
AA =0, (41
For a non-trivial solution, the determinant of A must vanish.
det(A,)=0. (42)

The determinant of A is a function of phase velocity cand wave number &. When the wave
number is assumed, the phase velocity can be obtained from eq. (42). consequently, the dispersion of
phase velocity is given by eq. (42) when the plate is free of stress.

For any cand & which satisfy eq. (42), the vector A, can be determined. Then A, can be
obtained by (36), and then the displacement, temperature as well as stress, can be determined easily.
Classical case:

This case corresponds to the situations when the strain and temperature fields are not coupled
with each other. In this case the thermo-mechanical coupling constant ¢, identically zero. Then eq. (42),
after straight forward calculations become product of two period equations for the symmetric and
antisymmetric modes, respectively, for a free homogeneous isotropic plate of thickness d "[16].

Another important situation is that of a constrained boundary of thermoelastic plate in the
context of generalized thermoelasticity.

CONSTRAINED BOUNDARY
If the boundary is fully constrained, then the boundary conditions are

D(0)=0, (43)
D(d)=0. (44)
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According to egs. (43) and (31), A, canbe expressedby A, .

A, =—(P, )_1P3A1- (45)
Substituting eq. (45) into eq. (32), S(d)and D(d) can be expressed by A .
S(d)=4.A,, (46)
D(d)=A4,A,, (47)
where A, =Q-Q,(P,)"'P, , (48)
A, =Q;-Q, (P4)_1P3 . (49)
With the boundary condition (44), we have
AAp =0 . (50)
For a non-trivial solution, the determinant of A, must vanish.
det(A,)=0. (51)

The determinant ofA,is a function of phase velocity cand wavenumber &. When the
wavenumber is assumed, the phase velocity can be obtained from eq. (51). Consequently, the dispersion
of phase velocity is given by eq. (51).

For any cand & which satisfy eq. (51), the vector A, can be determined. Then A, can be
obtained by (45), and then the displacement, temperature as well as stress, can be determined easily.

A third important situation is that solutions which are bound near the surfaces in the limit d—in
the context of generalized thermoelasticity.

SURFACE WAVE DETERMINATION

In order to have a surface wave, roots o2 (j=1,2,3) of eqg. (5) , must be either negative ( so that
square roots are purely imaginary) or complex numbers; this ensures that the superposition of partial
waves has the property of exponential decay. For these cases, as d—, then eq. (42) reduces to

(1—0:32)2 (af +a +aa +1—§2)—40510530:5(011 +a,)=0 (52)

wherea?,a; and a? areroots of (5). Equation (52) is the same as obtained and discussed by[11].
When ¢, = o after lengthy and straight forward calculation, we have

(z—ﬁj :16[1—£](1—§2)- (53)

¢,

This reveals that the elastic waves will be non-dispersive in character in this case, which is in
agreement with Stonely [17] in the non-dimensional case.
COUPLED THERMOELASTICITY

This case corresponds to no thermal relaxation time, i.e. 7, =0 and hence 7 = %0 Proceeding

on the same lines as in the above case, we again arrived at eq. (52). This is in agreement with the

corresponding results obtained by, [18, 19, 20]. If we use the condition w<<1, then the eq. (52) reduces to
2

mm(z—i—zj=16{(1+sl)—;2}(1—f—2]. (54)

2 2
when & =0, eq. (54) becomes eq. (53) and for & #0, it corresponds to the results obtained by [19, 20].
THERMOELASTICITY WITHOUT ENERGY DISSIPATION
The fundamental equations for such a medium, with heat sources and body forces absent, in the
context of generalized thermoelasticity developed by Green and Naghdi [12], are given by
uViu + (A+ )V divu- VO = pii, (55)
pC 6 + y0, div ii = k' V?6. (56)
Here u(X,Z,t) = (u,(), W) is the displacement vector; 6 is the temperature change above the
uniform reference temperature 6, p is the mass density; C is the specific heat at constant
deformation; A and u are the Lam£’s parameters; y = (3/1 + 2,u)ﬁ B is the coefficient of volume
expansion; and k* is a material constant characteristic of the theory.
The strain tensor E and the stress tensor T associated with U and € are given by the following
geometrical and constitutive relations, respectively, as

E = % [Vu + VI/IT], (57)
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6= Mdiv uyl + u(Vu+Vu)—y0lI . (58)
In all the above equations, the direct vector/ tensor notation [14] is employed; also, an overdot
denotes the partial derivative with respect to the time variable t. Some of the symbols and the
notations used here are slightly different from those employed in [14]. We suppose that the constants
appearing in egs. (55) and (56) satisfy the inequalities
u>0,2+2u>0,p>0,0,>0,C >0,k >0 (59)
Equations (55) and (56) represent a fully hyperbolic system that permits finite speeds for both
elastic and thermal disturbances, which are coupled together in general.
Define the dimensionless quantities

r_ l r Z r l (/1+2,U)

X = lx, t = lt, u = ] —7/00 U,

0 o A2 ]

g =2 F = E, T = —T. 60
0, 79, 7, (60)

Here lis a standard length and v is the standard speed
Introducing eq. (60) into egs. (55) and (56) and suppressing the primes, we obtain the following

E = %[Vu + VuT} (61)
2 2

5= (1—2%) (divii) I+ & [Vu+Vu' |-01 (62)

2

A+2u y7, \a(4

H C’= 2 = 2 _ K* - 0o 6

ere P G e G=23 5T aew (63)
C; Vi + (C1-C})Vdivi - CI VA =1 (64)
C:V0=0+ ¢V (65)

The egs. (64) and (85) serve as a coupled system of governing equations for the non-dimensional
field @ and non-dimensional temperature 6. We observe that C, and G, respectively represent the non
-dimensional speeds of purely elastic dilatational and shear waves and that C; represents the non -
dimensional speed of purely thermal waves. Also &, is the usual thermoelastic coupling parameter [14].
With this choice of co-ordinate system, egs. (55) and (56) in the Green and Naghdi [12] theory relevant
to our problem becomes

C12u1,11 + C22“1,33 + (C12 - sz )“3,13 - Cl2 T, =iy, (66)
C12”3,33 + C22”3,33 + (C12 - sz g3 — C12 Ty =i, (67)
CHT,, +Tyy) =T +e (i, +(iy,) . (68)
Substituting u,, us;, and T from (4) into egs. (66) to (68), we obtain a system of coupled equations
M, (a,)=0, p,q=13,4 (69)

with corresponding coefficients as
M, :Cza2 +C -c, M= (C12 - sz)ar M, = Clzr M =M,
M, =C)+Cla’-c*,M,, =Cla, M, =c’¢,, M,; =¢,c’«,
M, =Ci(1+a’)-c’. (70)
The existence of nontrivial solution for U,, U, and U demands vanishing of the determinant in egs.
(69) for GN theory, and yields the polynomial equation

[Ci(a” +1) - ][a* + Pa® +Q]=0, (71)
where

_2G7C —[(+4)C] + G )e’} (e’ [ +)C) + CL)e” + C/CLY 72)
ees e '
Here «o,a are roots of the equation «'+Pa’+Q=0and dare corresponds to coupled

P y 0=

C
longitudinal and thermal waves in GN theory, whereas & ;= e 1 corresponds to transverse wave
2

which is not affected by the temperature fields, thermal relaxations and thermo-mechanical coupling.
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Solving eq. (69) for the six roots of & and using superposition results in the following formal
solution relating the displacements, temperature, thermal stresses and temperature gradient in the
context of thermoelasticity without energy dissipation to its wave amplitudes, we get the following
relations corresponding to egs. (10) to (12) of Section 3 as:

2 2 2 2 2 2 2

r; S 2|, B = _2_C2 Fooy =V, 1 —2—C2 QA T = Gl -l 2—C2 a
- s 3(3 - - - -

1(1) C12 sz (3) C12 » "1(5) 1 » 10 C12 15 13) C12 ()] C12 2

a}
Q =006, 0,=0,Q, =a,0;
czel[(l+05qz)C22 —c’]

O, = , g=15
CClet —{Ci(1vad) -y -ciyy !

'
— O3 — Oy T_! T

033 = lf ’ 13_i§; :? (73)

ia,z oo
E =e™ E=€"""" ,-12,.6

The various parametersa, ,a,, a,, £2, £2, r,) andrsy;, j=1,3,5 etc. are then specialized in the
context of thermoelasticity without energy dissipation to obtain the results corresponds to (26) and
then to (31) and (32).

Further, introducing the appropriate stress free and constrained boundary conditions on the
corresponding stresses and temperature gradient relevant to our problem, in this theory, and
proceeding as in the previous section, we obtained the relations, which are of the same form as (42) and
(51) (of Section 3) in the theory of thermoelasticity without energy dissipation.

In order to have surface wave in the context of linear theory of thermoelasticity without energy

dissipation, proceeding on the same lines as in previous section and on simplification, we obtained
2

(1_6132)2[6112 "'as2 +aa; +1—%]+4a10{5a3 (al +0{5) =0 ’ (74)
1

2

and when &, =0, (74) reduces to,
6’2 2 C C2
2 ) = 16(1 T )(1 -
2 2 1

(Z—C c c ). (75)

Here egs. (74) and (75) are in GN theory, corresponds to the egs. (52) and (53) of LS theory.
NUMERICAL RESULTS AND DISCUSSION
In this section, firstly, we found that characteristic egs. (42)and (51) after lengthy calculations and

reductions decoupled into symmetric and antisymmetric modes respectively.
k+3

[ ’ ’ ( ) ’ ’ F
det(A]) =det(A[ ) det(A) )= > (=1) * "ry,,G/ tan" (ya,) =0, (76)
k=1,3,5
where },:ﬂ
2
I”/ }"/ }"/ I"/ }"/ I"/
and G/ —|"133) 13(5) [ S KT 13(5) [ S KT 13(3)

of vibrations in both LS and GN theories of generalized thermoelasticity which are period equation.
Numerical calculations are then carried out to present phase and group velocities, (¢ and

U=c+ 53—2, respectively) dispersion curves Vs wave number, assuming the thickness of the plate,

when the plate is free of stress. Dispersion curves for the first four symmetric and anti-symmetric
modes are shown in Figure 1. and Figure 2. for LS theory and Figure 3. and Figure 4. for GN theory. The
material chosen for this purpose of numerical evaluation is aluminum. The physical data for such
materials is given as follows:

O Young’s modulus = 70 Gpa, Poisson ratio = 0.3, density= 2675 kg/m’

O Specific heat =921 J/kg® C ,thermal conductivity = 204 W/ m° C,

O Expansion coefficient = 23u &/°C.

In Figure 1(a), the first mode of symmetric vibration, the phase velocity decreases monotonically
with increasing values of wave number from ¢, (plate velocity) at &= 0 to cx (Rayleigh surface wave
speed) at &= oo The group velocity has the same asymptotic limits but has a minimum. In the first mode
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antisymmetric vibration Figure 2(a), the phase velocity increases monotonically with increasing wave
number values {fromc=0at {=0toc=crat &= oo As &—0,U — 0, which is characteristic of flexural
waves, and as & — o, ¢ - U — cg in the plate. The maximum value of group velocity is equal to
horizontal velocity of SV waves in the plate. The results obtained for flexural mode (first mode) are in
agreement with the corresponding results obtained by Ewing et. al. [16](in Fig. 6-18) in the classical case.

Figure 1(a) Figure 1(b)
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Figure 1. Dispersion curves in LS theory of generalized theories of thermoelasticity for symmetric modes

In Fig. 1(b), the second mode, the phase velocity is higher than the horizontal velocity of SV waves
in the plate. Againasc — o, U —0as &—0andas & — o ¢ - U — horizontal velocity of SV waves in
the plate. Both the maximum and minimum values of group velocity are associated with this mode at
intermediate wave numbers. Similar relations between phase and group velocity for higher modes are
demonstrated in the dispersion curves in Figure 1(c), Figure 1(d) and Figure 2(c), Figure 2(d). The turning
of the phase and group velocity curves for fourth mode (antisymmetric), Figure 2(d) approach the c-axis
at low wave number, at such a large values that these are multiplied by 10> to see them on the figures.

Figure 2(a) Figure 2(b)
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Figure 2. Dispersion curves in LS theory of generalized theories of thermoelasticity for antisymmetric modes
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From Figure 1 and Figure 2, it is observed that dispersion curves for symmetric and antisymmetric
modes in LS theory of generalized thermoelasticity get merged and then approach each other as wave
number increases, where the phase and group velocities tend towards the Rayleigh surface wave speed.

Figure 3(a)
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Figure 3. Dispersion curves in GN theory of generalized theories of thermoelasticity for symmetric modes
Dispersion curves for antisymmetric and symmetric modes in GN theory of generalized
thermoelasticity, for aluminum material plate are shown in Figure 3 and Figure 4. It has been found
from these Figure 3(c), Figure 4(c) and Figure 4(c), Figure 4(d) that phase velocity is equal to group
velocity i.e., ¢ = U for second and third modes (antisymmetric), third and fourth modes (symmetric),
and hence these modes are non-dispersive in the GN theory.
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Dispersion curves in GN theory of generalized theories of thermoelasticity for antisymmetric modes
In the GN theory, Figure 1 and Figure 2, shows that there exist symmetric and antisymmetric
modes of coupled (thermal and elastic waves modes) waves, without any attenuation. The fact that,
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this is not the case in the LS theory is an interesting feature inherent in GN theory, in LS theory the
waves experience attenuation, and the attenuation factors decay exponentially [21, 22]. It has also been
observed that predictions of the GN theory are qualitatively similar to those of the LS theory.

When the thermal relaxation time z,—0, then the results obtained in the analysis reduces to
conventional coupled theory of thermoelasticity. When the coupling constant &, is identically zero, the
strain and thermal fields are uncoupled to each other. In this case the results can be obtained as in the
uncoupled theory of thermoelasticity.

CONCLUSIONS

It is observed that implicitly there exist symmetric and antisymmetric modes of thermal and
elastic waves modes (coupled) both in LS and GN theories of generalized thermoelasticity. It is found
that in both the theories, waves mode are observed to be more effected at the zero wave number
limits, due to the thermo-mechanical effects. This clearly demonstrates the difference between the
coupled and generalized theory of thermoelasticity. The various waves mode get merged and then
approach each others at high frequencies, where the phase velocity tends towards the Rayleigh surface
wave speed. It observed that, although GN and LS models were derived from distinctively different
physical assumptions and physical laws, the spectral behaviors described by GN model are qualitatively
similar to that of LS model. They resolve two waves, one mechanical and one thermal wave, but in the
GN model neither the mechanical wave nor the thermal wave experiences any attenuation. That, this is
not the case in LS theory, is an interesting feature inherent in the GN theory, in LS theory both waves
experience attenuation. It is also demonstrated that transverse waves are not functions of temperature
field and thermo-mechanical terms in GN theory as observed in LS theory. Since, the classical
uncoupled theory gives the identical results, therefore, it can be concluded that the differences
between the generalized (GN and LS theories) and classical theories diminish in describing the phase
velocities of uncoupled thermoelastic waves. When the wave number is assumed, the phase velocity
can be obtained from eq. (42), consequently, the dispersion of phase velocity is given by eq. (42) when
the plate is free of stress and using rigid boundary conditions. Further, for any c and & which satisfy eq.
(42), the vector Aican be determined. Then A2 can be obtained by (36), and then the displacement,
temperature as well as stress and strain, can be determined easily.
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