
 

© copyright FACULTY of ENGINEERING ‐ HUNEDOARA, ROMANIA  199 

1. Anita NAYAK, 2. G.C. DASH  
 
 

OSCILLATORY EFFECT ON MAGNETO-HYDRODYNAMIC 
FLOW AND HEAT TRANSFER IN A ROTATING 
HORIZONTAL POROUS CHANNEL 
 
1. DEPARTMENT OF MATHEMATICS, SILICON INSTITUTE OF TECHNOLOGY, BHUBANESWAR-751024, INDIA 
2. DEPARTMENT OF MATHEMATICS, ITER, S’O’A UNIVERSITY, BHUBANESWAR-751030, INDIA 
 
ABSTRACT: This paper analyses the effect of injection/suction on an oscillatory flow of an 
incompressible electrically conducting viscous fluid in a porous channel. The channel with constant 
injection/suction and variable temperature rotates about an axis perpendicular to the plates of the 
channel. A magnetic field of uniform strength is also applied normally to the plates. The upper plate 
is allowed to oscillate in its own plane whereas the lower plate is kept at rest. The heat transfer is 
studied under two conditions, the temperature of the upper plate is allowed to oscillate whereas the 
temperature of the lower plate is kept constant. The originality of the paper is to incorporate the 
effect of magnetic field when it is fixed relative to the fluid as well as to the moving plate and also to 
study the heat transfer aspect of the flow in the presence of porous matrix. It is interesting to note 
that magnetic field fixed relative to the moving plate (k1=1.0) contributes more to the resultant 
velocity than the magnetic field fixed relative to the fluid (k1=0.0) in case of all the parameters. 
Another striking result is that frequency of oscillation has a distinct effect when the magnetic field is 
fixed relative to the fluid. The effect of all the pertinent parameters on phase angle is just opposite 
to that of resultant velocity owing to the relative positions of the magnetic fields. 
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INTRODUCTION 
It is essential to study the theory of rotating fluids Greenspan (1969) due to its occurrence in 

various natural phenomena and its applications in various technological situations which are directly 
governed by the action of Coriolis force. The broad subjects of Oceanography, Meteorology, 
Atmospheric Science and Limnology all contain some important and essential features of rotating 
fluids. Several authors like Siegman (1971), Mazumder (1991), Ganapathy (1994), Hayat and Hutter 
(2004), and Guria et al. (2006) have studied the problem of hydrodynamic flow of a viscous 
incompressible fluid in a rotating medium. The problem of magneto-hydrodynamic flow of a viscous 
incompressible electrically conducting fluid in a rotating medium has been studied by many 
researchers like, Ghosh and Pop (2002), Hayat and Abelman (2007), and Abelman et al. (2009) under 
different conditions and configurations to analyze various aspects of the problem.  

Seth et al. (1988) and Singh (2000) considered oscillatory hydromagnetic Couette flow of a 
viscous incompressible electrically conducting fluid in a rotating system under different conditions. 
Guria et al. (2009) investigated oscillatory MHD Couette flow of electrically conducting fluid between 
two parallel plates in a rotating system in the presence of an inclined magnetic field when the upper 
plate is held at rest and the lower plate oscillates non-torsionally. Das et al. (2009) have studied 
unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid in a 
rotating system when the fluid flow within the channel is induced due to impulsive movement of one 
of the plates of the channel whereas Singh et al. (1994) considered this problem when one of the 
plates of the channel is set into uniformly accelerated motion. Seth et al. (1982) analyzed this 
problem when the lower plate of the channel moves with time dependent velocity U (t) and the upper 
plate is kept fixed. They considered two particular cases of interest such as, (i) impulsive movement 
of the plate and (ii) uniformly accelerated movement of the plate. In all these investigations, the 
channel walls are considered non-porous.  

However, the study of such fluid flow problems in porous channel have numerous engineering 
and geophysical applications in the fields of chemical engineering for filtration and purification 
process, in agriculture engineering to study the underground water resources, in petroleum 
technology to study the movement of natural gas, oil and water through the channels/reservoirs, 
mineral and metallurgical industries, designing of cooling systems with the liquid metals, MHD 
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generators, MHD pumps,  accelerators and flow meters, geothermal reservoirs and underground 
energy transport etc. In view of these applications, Singh (2004), and Hayat et al. (2007, 2008) 
considered MHD flow within a parallel plate channel with porous boundaries, under different 
conditions, in non-rotating/rotating system. Ram and Mishra (1977) applied the equations of motion 
derived by Ahmadi and Manvi (1971) to study an unsteady MHD flow of conducting fluid through 
porous medium. Effect of suction and injection on MHD three dimensional Couette flow and heat 
transfer through a porous medium was studied by Das (2009). Seth et al. (2010) discussed the effects 
of rotation and magnetic field on unsteady Couette flow in a porous channel. Singh and Mathew (2008) 
have analyzed injection/suction effect on an oscillatory hydromagnetic flow in a rotating horizontal 
porous channel.  Oscillatory MHD flow in a rotating horizontal porous channel filled with a porous 
material in presence of suction/injection has also been studied extensively by Pradhan et al. (2011). 

The objective of the present paper is to study the effect of suction/injection on the flow and 
heat transfer phenomena of a viscous incompressible electrically conducting fluid in a rotating 
horizontal porous channel in the presence of a uniform transverse magnetic field when it is fixed 
relative to the fluid and / or to the moving plate. The plates of the channel are considered porous and 
flow within the channel is due to the oscillatory motion of the upper plate. The model has important 
applications in novel magneto hydrodynamic (MHD) energy system, magneto biofluid and designing 
MHD devises requiring fluid flow control. 
MATHEMATICAL MODEL 

Consider an oscillatory flow of a viscous incompressible and electrically conducting fluid 
between two insulating parallel porous plates  of infinite length, distance d apart in the presence of a 
uniform transverse magnetic field B0 applied parallel to z*-axis which is normal to the planes of the 
plates. Two cases of magnetic fields are considered here, namely (i) magnetic field is fixed relative to 
the fluid and (ii) magnetic field is fixed relative to the moving plate. The heat transfer aspect of the 
flow is also studied. A constant injection velocity, w0, is applied at the lower stationary plate and the 
same constant suction velocity, w0, is applied at the upper plate which is oscillating in its own plane 
with a velocity U0(1+εcosω*t*) about a non-zero uniform mean velocity U0.  

The fluid as well as plates of the channel are in a state of rigid body rotation with uniform 
angular velocity * about z*- axis. Choose the origin on the lower plate lying in x*– y* plane and x*- 
axis parallel to the direction of motion of the upper plate. Since plates of the channel are infinite 
along x* and y* directions and are electrically non-conducting, all physical variables, except pressure, 
will be functions of z* and t*. Since magnetic Reynolds number is very small for metallic liquids so the 
induced magnetic field may be neglected in comparison with the applied one. This is the well known 
low magnetic Reynolds number approximation (Cramer and Pai 1973). Initially, (t*<0), both the fluid 
and plates are assumed to be at rest. When t*>0, the upper plate starts moving with a velocity 
proportional to U*(t*) in a co-ordinate system rotating with the fluid. The equations of continuity, 
motion and energy in vector form are: 
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where q, B, E, J are, the velocity, the magnetic 
field, the electric field and the current density 
vector respectively where as n is the unit vector 
in the z* direction, σ is fluid electrical 
conductivity, e is the magnetic permeability of 
the fluid, and t* denotes time. 

The physical model of the problem is 
illustrated in figure 1 below, where q=( u*, v*, 
w*) is the velocity vector in the x*, y*, z* 
directions respectively. 

B=(0, 0, B0),  E=(Ex, Ey, Ez),  J=(Jx, Jy, 0) 
where B0is a constant. It is assumed that no 

 
Figure 1. Physical Model and Coordinate System 
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applied and polarization voltage exists (i.e., E=0). This then corresponds to the case when no energy is 
added to or extracted from the fluid by the electric field. Now, the equation for the conservation of 
electric charge, .J = 0, leads to Jz* = constant. As in the case of vertical velocity, we immediately see 
that Jz* = 0. Eq. (7) thus yields 

*J v,J 2
0*y

2
0*x uBB                                                        (9) 

In view of the above considerations, Eq. (2) and (8) can be rewritten in the component form as 
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The initial and boundary conditions for the present problem are   

0  t*and      d z* 0  0,v*u* 
 

 0TT* ,0ww*0,v*u*  at z* = 0, 

t*),*εcosω(10U(t*)*Uu*  v* 0, w* w    at z*0 d  
 

T * =  T   at z* =  dd  
(Constant plate temperature)                                 (13)

 
T *  =  T (T T )c o s * t*    a t  z *  =  d0d d   (Oscillatory plate temperature) at t* > 0

 
We note that Eq. (10) is valid when the magnetic field is fixed with respect to the fluid. On the 

other hand, when the magnetic field is fixed relative to the moving plates, Eq. (10) is replaced by the 
following equation given by (Raptis and Singh 1986): 
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Now, Eq (10) and (14) can be rewritten as the single equation
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is the kinematic viscosity, t is time, is the density and p* is the modified pressure, T is the 
temperature, K is the thermal conductivity, CP is the specific heat at constant pressure and k* is the 
permeability of the medium. From Eq. (1), it is clear that, w*=w0 (constant). Substituting w*=w0 and 
the modified pressure gradients under the usual boundary layer approximation i.e. from Eqs. (10) and 
(11) are: 
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Substituting  the above pressure gradients in Eqs. (11) and (15), we get 
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The following non-dimensional quantities are introduced = z*/d, t = *t*, u = u*/U0, v = v*/U0, 

 = *d2/ (rotation parameter), =*d2/ (frequency parameter), S=w0d/  (injection/ suction 

parameter) and M = B0d

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The corresponding transformed boundary conditions are 
u v 0,                                  at   0 1  , t 0

  u v 0,  T 1,                                      at   0

u U(t) 1 ε cos t,   v 0,   at     1

T 0    at    1 (Constant plate temperature)
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T cos   at 1(Oscillatory plate temperature) t    

at t > 0                     (21) 

SOLUTION OF THE PROBLEM 
Let us combine Eqs. (18) and (19) into a single equation, by introducing a complex function q = 

u+iv, and we get 
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and the boundary conditions (21)  for q can be written 
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Following Lighthill (1954) we have considered the solutions as given below 
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Substituting equation (24) and (25) into equations (20) and (22) and comparing the harmonic and 
non-harmonic terms, we get 
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The corresponding transformed boundary conditions including the two different cases of 
temperature become 

q0 =q1 = q2 = 0, at 0  1, t   0. 
q0 =  q1 = q2 = 0, T0 = 1, T1 = 0, at  = 0 

q0 = q1 = q2 = 1,                         at  = 1                          (31) 
T0 = 0, T1 = 0 at  = 1, Constant plate temperature                   

T0 = 0, T1 = 1 at  = 1 Oscillatory plate temperature, at t > 0
 The solutions of Eqs.(26) to (30) under the boundary conditions (31) are given by 
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Now, for the resultant velocities and the shear stresses of the steady and unsteady flow, we write  
q0() = u0( ) + iv0()                                                      (38) 

and q1()eit+q2()e–it = u1() + iv1()                                           (39) 
The resultant velocity or amplitude and phase difference of the steady and unsteady flow are given by 
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where uo, u1 are the primary and v0, v1 are the secondary velocities of the steady and unsteady flow 
respectively. 

Shear Stress at the Stationary Plate for the Steady flow: 
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The amplitude and phase difference are given by  
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Shear Stress at the Stationary Plate for the Unsteady flow: 
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The amplitude and phase difference are given by  
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RESULTS AND DISCUSSION  
a) Steady case 

Figure 2 presents the effect of porosity parameter Kp and magnetic parameter M on resultant 
velocity R0. It is observed that the resultant velocity R0 is not affected by the porosity parameter Kp 
but an increase in magnetic parameter increases it.  Further, it is interesting to note that magnetic 
field fixed relative to the moving plate (k1=1.0) contributes more to the resultant velocity than the 
magnetic field fixed relative to the fluid (k1=0.0). 

Figure 3 exhibits the effect of rotational parameter Ω on resultant velocity R0. Curve VI depicts 
the effect without rotation (Ω=0.0) and without porous medium (kp=100). In this case, the resultant 
velocity assumes the lowest value in both the cases k1=0.0 and k1=1.0. Again comparing the curve VI 
(Kp=100) with I (Kp=1), it is clearly seen that presence of porous matrix without rotation increases the 
resultant velocity. Further, it is to note that resultant velocity increases with the increase in the value 
of rotational parameter. On careful observation, it is revealed that on increasing the rotation of frame 
of reference, the difference between the resultant velocity in respect of k1=0.0 and k1=1.0 decreases 
and ultimately it coincides with curve IV. Thus, it may be concluded that with higher value of rotation 
the relative position of magnetic field with respect to moving plate and the fluid has no effect.  

Figure 2. Resultant velocity R0  
for various values of Kp  

and M (=5, S=2) 

Figure 3. Resultant velocity R0  
for various values of Kp  

and  (M=2, S=2) 

Figure 4. Resultant velocity R0  
for various values of Kp  

and S (=5, M=2) 
The effect of suction /injection parameter S on resultant velocity R0 is shown through curves II and 

III in Figure 4. It is observed that in case of suction (S<0) the resultant velocity R0 increases significantly 
(curve III) whereas for injection (S>0) it decreases (curve II). Therefore, injection is found to be 
counterproductive for enhancing the resultant velocity. It is important to note that the resultant velocity 
R0, for magnetic field fixed relative to the moving plate (k1=1.0) is always greater than its counterpart that 
is the magnetic field fixed relative to the fluid (k1=0.0) in all the cases. Also, another striking result is that 
in the absence or presence of suction /injection, porous media has no significant effect on the resultant 
velocity R0 for both k1=0.0 and k1=1.0. 

  
Figure 5. Phase angle 0 for various values  

of Kp and M (=5, S=2) 
Figure 6. Phase angle 0 for various values  

of Kp, S and  (M=2) 
Figure 5 exhibits the variation of phase angle δ0 for different values of the parameters Kp and 

M. It is noted that phase angle decreases steadily span wise for different values of porosity 
parameter.  Relative position of magnetic field with respect to the fluid (k1=0.0) has a greater phase 
angle in all the cases than its counterpart (k1=1.0) which is of opposite effect on resultant velocity. 
Further, it is to note that as the magnetic field increases, phase angle also increases significantly. 
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Figure 6 depicts the variation of phase angle δ0 for different values of the parameters S and Ω. 
One most interesting result is that phase angle assumes negative value for higher value of rotation 
parameter (Ω≥ 25) for the layers (η>0.4), little away from the lower plate. Also, the negative value of 
phase angle appears in case of suction (s=-4.0) and without suction that is for impermeable wall. 
Further, it is seen that the role of porosity is to decrease the phase angle in both the cases k1=0.0 and 
k1=1.0. 
b) Unsteady case: 

Figure 7(a),(b)&(c) depicts the resultant velocity in case of the unsteady motion. In comparison with 
the steady case, it is seen that the effects of all the parameters Kp, S, Ω and M remain same as that of 
steady flow except the magnitude which is nearly twice than that of the steady case. 

   
Figure 7(a). Resultant velocity R1 

for various values of Kp  
and M (=5, S=2, =5) 

Figure 7(b). Resultant velocity R1 
for various values of Kp  
and  (M=2, S=2, =5) 

Figure 7(c). Resultant velocity R1 
for various values of Kp  
and S (=5, M=2, =5) 

Figure 8 shows the effect of frequency of oscillation ω on resultant velocity R1. It is observed 
that the frequency parameter ω has noticeable effect when magnetic field is fixed relative to the 
fluid (k1=0.0) but in case of its counterpart, that is (k1=1.0) there is no significant effect. Therefore, 
the above result suggests that while studying the unsteady motion, the magnetic field is to be 
considered with respect to the fluid so that the flow parameters have distinct role to play in 
modifying the resultant velocity. Moreover, it is seen that the resultant velocity R1 decreases with an 
increasing value of ω for both the cases that is k1=0.0 and k1=1.0. 

   
Figure 8. Resultant velocity R1  

for various values of Kp  
and  (=5, S=2, M=2) 

Figure 9(a). Phase angle 1  
for various values of Kp  
and M (=5, S=2, =5) 

Figure 9(b). Phase angle 1  
for various values of Kp, S  

and  (M=2, =5) 
Figure 9(a) and (b) presents the variation of phase angle δ1 of 

unsteady flow for different values of Kp, Ω, Sand M. It is observed 
that the effects of all the parameters on phase angle remain same 
as that of steady flow except the magnitude which is nearly twice 
than the steady case 

Figure 10 exhibits the variation of phase angle δ1 for 
different values of frequency parameter ω. It is seen that phase 
angle assumes higher values when the magnetic field is fixed 
relative to the fluid for all the values of the parameters. It is also 
to note that permeability of the medium is responsible for 
decreasing the phase angle in both, presence (ω≠0) or absence 
(ω=0) of oscillation as well as in both the relative positions of 
magnetic field.  

Figure 11 shows the temperature distribution for various 
values of Prandtl number Pr, frequency of oscillation ω and 

 
Figure 10. Phase angle 1 for various 
values of Kp and  (=5, S=2, M=2) 
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suction/injection parameter S when the plates are maintained at constant temperature.  It is seen 
that higher Prandtl number fluid in the presence of injection contributes to increase the thickness of 
the thermal boundary layer whereas suction decreases it. Again, it is seen that frequency of 
oscillation ω has no effect. 

  
Figure 11. Constant plate temperature distribution 

for various values of Pr, S & 
Figure 12.Oscillatory plate temperature distribution 

for various values of Pr, S & ω 
From Figure 12 it is revealed that the role of 

Pr and S remains same for both constant plate 
temperature and oscillatory plate temperature 
except ω where, an increase in ω leads to increase 
the temperature at all the points of the flow 
domain. 

Table 1 presents the numerical values of 
amplitude of oscillation (or) and phase difference 
(or) of shear stress at the stationary plate (η=0) for 
the steady flow. It is observed that an increase in 
rotation parameter Ω, magnetic parameter M and 
suction parameter S leads to increase the amplitude 
of shear stress but presence of injection and porous 
matrix decreases it. Further, one striking result is 
that absence of injection/suction (S=0), without 
rotation and porous matrix, amplitude of shear 
stress decreases where as in the absence of 
magnetic field it increases. Thus application of 
magnetic field associated with the presence of 
injection/suction, porous matrix and rotation are 
responsible for reduction of the amplitude of shear 
stress. Thus, it may be concluded that the reduction 
of amplitude of shear stress leads to flow stability 
which is desirable. Moreover, an increase in the value of rotation and injection parameters leads to 
increase in phase angle whereas the reverse effect is observed in case of suction (S<0) and magnetic 
parameter M. The above discussion is true for both the cases k1=0.0 and k1=1.0. 

Table 2: Values of τ1r and θ1r for various values of K1, S, , M, Kp and ω 
k1 kp  M S or or k1 
0 100 2 5 2 5 4.75869 0.79521 
1 100 2 5 2 5 5.81319 0.49052 
0 1 2 5 2 5 4.85796 0.73482 
1 1 2 5 2 5 5.98130 0.45878 
0 1 0 5 2 5 6.28722 0.57122 
1 1 0 5 2 5 7.90197 0.31183 
0 100 0 5 2 5 6.14392 0.61705 
1 100 0 5 2 5 7.71021 0.32894 
0 1 -4 5 2 5 10.67874 0.27532 
1 1 -4 5 2 5 13.77252 0.08581 
0 1 2 5 0 5 4.64057 1.00919 
1 1 2 5 0 5 4.64057 1.00919 
0 100 2 5 0 5 4.68438 1.08659  

k1 kp  M S or or k1 
1 100 2 5 0 5 4.68438 1.08659 
0 1 2 0 2 5 2.82477 0.00000 
1 1 2 0 2 5 4.87487 0.00000 
0 1 2 25 2 5 12.49222 0.84087 
1 1 2 25 2 5 12.60830 0.76168 
0 100 2 0 2 5 2.46425 0.00000 
1 100 2 0 2 5 4.59097 0.00000 
0 1 2 5 2 10 4.57494 0.69044 
1 1 2 5 2 10 5.83291 0.43583 
0 1 2 5 2 0 5.04864 0.70923 
1 1 2 5 2 0 6.15720 0.44612 
0 100 2 5 2 0 4.95806 0.76571 
1 100 2 5 2 0 5.99593 0.47647  

 

Table 2 presents the numerical values of amplitude (1r) and phase difference (1r) of  the shear 
stress at the stationary plate (η=0) in case of the unsteady flow. It is quite remarkable to note that 

Table 1: Values or of and or for different values 
of k1, S, , M and kp 

k1 kp  M S or or 
0 100 5 2 2 2.5295 0.7657 
1 100 5 2 2 3.0589 0.4765 
0 1 5 2 2 2.5757 0.7092 
1 1 5 2 2 3.1412 0.4461 
0 1 5 2 0 3.3227 0.5560 
1 1 5 2 0 4.1176 0.3043 
0 100 5 2 0 3.2579 0.5992 
1 100 5 2 0 4.0220 0.3209 
0 1 5 2 -4 5.5462 0.2715 
1 1 5 2 -4 7.0860 0.0808 
0 1 5 0 2 2.4839 0.9597 
1 1 5 0 2 2.4839 0.9597 
0 100 5 0 2 2.5087 1.0269 
1 100 5 0 2 2.5087 1.0269 
0 1 0 2 2 1.4863 0 
1 1 0 2 2 2.5499 0 
0 1 25 2 2 6.3826 0.8298 
1 1 25 2 2 6.4509 0.7514 
0 100 0 2 2 1.2898 0 
1 100 0 2 2 2.3992 0 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering 
 

Tome XI (Year 2013). Fascicule 1. ISSN 1584 – 2665  207 

the rotational parameter Ω, magnetic parameter M, suction and porosity of the medium have same 
effect as that of steady case. Only ω, the frequency of oscillation decreases the amplitude but 
increases it for some values of ω (ω<5). Further, it is noted that in absence of porosity and frequency 
of oscillation, amplitude of shear stress decreases but phase angle increases slightly. Hence, presence 
of porous matrix and oscillatory motion are unfavorable for reduction of shearing stress. 

Nusselt Number (Nu) 
The rate of heat transfer between the fluid and the plate 

is analyzed through non-dimensional Nusselt number and the 
calculations of this number for constant plate temperature and 
oscillatory plate temperature are given in Table 3 and Table 4 
respectively. 
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It is evident that Nusselt numbers (Nu) for both air 
(Pr=0.71) and water (Pr=7.0) decrease with an increase in the 
value of Prandtl number Pr as well as injection parameter 
(S>0) but in case of suction (S<0), it increases. Moreover, it is 
seen that Nusselt number decreases with an increase in 
frequency of oscillation ω. Therefore, it may be concluded 
that the increasing frequency of oscillation in a high Prandtl 
number fluid in the presence of injection do not favour the 
high rate of heat transfer. 
CONCLUSIONS 

The theoretical study of oscillatory MHD flow and heat 
transfer through a porous medium in a rotating system reveals the following facts. 
a) Steady case:  

� Permeability of the medium has no noticeable effect on the resultant velocity. 
� Enhancement of resultant velocity is well marked in case of the relative position of magnetic 

field fixed with respect to the moving plate whereas reverse effect is observed in case of 
phase angle for all the cases. 

� Without rotation and without porous medium are found to be counter-productive on the 
resultant velocity in both the positions of magnetic field whereas presence of porous medium 
without rotation favours the enhancement of resultant velocity. 

� Absence of rotation and porous medium is found to be counterproductive on the resultant 
velocity in both the positions of magnetic field whereas presence of porous medium without 
rotation favours the enhancement of resultant velocity. 

� No tangible effect is marked due to relative positions of the magnetic fields with respect to 
fluid and moving plate under the influence of greater Coriolis force. 

� Presence of injection reduces the resultant velocity in the entire flow domain. 
b) Unsteady case: 

� Unsteady flow enhances the resultant velocity nearly twice in magnitude preserving the other 
characteristics intact. 

� Reduction of phase angle occurs irrespective of presence or absence of rotation and relative 
positions of magnetic fields. 

� Higher Prandtl number fluid in the presence of injection is conducive for the growth of 
thermal boundary layer where as suction is not. 

� Frequency of oscillation favours the enhancement of temperature at all points. 
� Larger amplitude of the shear stress at the stationary plate is experienced due to increasing 

rotation, magnetic intensity and suction. 
� Presence of porous matrix and oscillatory motion are unfavourable for reduction of shearing 

stress. 
� The increasing frequency of oscillation in case of a high Prandtl number fluid in presence of 

injection do not favour the high rate of heat transfer. 
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