
 

© copyright FACULTY of ENGINEERING ‐ HUNEDOARA, ROMANIA  47 

1. Mihaylo Y. STOYCHITCH  
 
 

PRACTICAL EXPONENTIAL TRACKING OF DIGITAL 
SYSTEMS 
 
1. FACULTY OF MECHANICAL ENGINEERING, UNIVERSITY OF BANJA LUKA, VOJVODE STEPE 71,  
78000 BANJA LUKA, BOSNIA AND HERZEGOVINA 
 
ABSTRACT: In this paper we consider practical exponential tracking of nonlinear time-invariant digital 
systems. The definition of practical exponential tracking is introduced. Based on the definition we 
give and prove criterion and control algorithm that ensures practical exponential tracking. 
Simulations of the proposed control algorithm are performed, where a manipulator with three 
rotational joints (three DOF) is used as an object. The results of the simulation verify the proposed 
theory. 
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INTRODUCTION 

For many technical objects it is typical that their desired dynamic behavior is time varying and 
that the disturbances act upon them. In this case, the task of the control is to ensure a required 
closeness between the actual and desired behavior of the controlled plant (object). Briefly, the 
control has to ensure a kind of tracking, even in circumstances, when disturbances act on the object. 

There exist different concepts of tracking: the absolute tracking concept (established by Grujić 
and Porter, [2]), the Lyapunov tracking concept (introduced by Grujić in the references [5] through 
[10] of the paper [3]) and practical tracking concept (defined also by Grujić, [3]). Besides these 
concepts, there exists kth order tracking [5], which incorporates the previous tracking concepts. 

Practical tracking was introduced by Grujić, firstly for the continuous-time systems [3], and 
then for the discrete-time systems, [4]. Later, this concept was developed in papers [6], [7], given by 
the same author. Further contributions to the theory of practical tracking were given in [8] for 
continuous systems, in [10,12] for digital systems and in [11] for hybrid systems. 

Tracking in the sense of Lyapunov requires the existence of a Δ  neighborhood of an initial 
desired output 0dy , such that for each initial output  0y   from that neighborhood, the real object 

output  )(ty   converges to the desired output  ( )tyd , as time increases infinitely, or mathematically  

.0)()(lim0 00 =−⇒Δ<−∴>Δ∃
∞→

tytyyy dtd  

This is the classical, widely known and used tracking property called asymptotic tracking, or 
simply, tracking. 

Different from the Lyapunov tracking concept, the practical tracking concept takes into account 
all technical and construction constraints of a real object, as well as the object behavior over a 
prespecified (possibly finite) time interval. This concept starts with the following prespecified (or to 
be determined) sets of output errors (which are connected neighborhoods of the zero error value): the 
set of initial errors IE , the set of actual errors AE  and the set of final errors FE . Based on these 

sets and the set of desired outputs  ydS   we calculate the appropriate sets of the admitted real 

outputs  )( ),( tYtY AI   and  )(tYF . Now, the practical tracking is achieved if there exist control  ( )tu   

that to transfer the system real output  )(ty   from a set of initial outputs  )(tYI   to a set of final 

outputs  )(tYF , during the predefined or to be determined, time  τ ,  +∈∈ R[),,0[( ττt , so that the 

system real output must not leave the set of the permitted instantaneous actual outputs  ( )tYA . At 
the same time, disturbances and controls should belong to the, in advance, permitted and realizable 
sets,  dS   and  uS , respectively. 
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Depending on the desired change of the instantaneous output errors  )(te   and their 
convergence from the initial to the final values, we distinguish several types of practical tracking, 
[10,11,12]. If that change is exponential, then it is the practical exponential tracking. 
NOTATION 
− nmB mn ≤∈ × ,R ; a matrix describing the transmission of control action,  

− )()(,,R)()](),(),(;;[ 0 kykyemrekezuyeke dk
r

kd −=≤∈==⋅⋅⋅ ; the time evolutions of the 

output error vector e  related to  ree R)0(0 ∈= , )(ku , )(kz , )(kyd at the time  nZk ∈ ,  

− AI
rE ,)()( ,R =∈ ⋅⋅ ; the sets of all admitted  ke  (closed connected neighborhood of zero error  0e ) 

on the time sets {0}  and nZ  respectively,  

− { })()( :min ⋅⋅ ∈= Eeeem  and { } AIM Eeee ,)()()(  ,:max =∈= ⋅⋅⋅ ; minimum and maximum respectively, 

taken for each element of the error vector e , so that, for example  ( ) ( ) ( )( )TIrIII eeee ⋅⋅⋅⋅ =    21)( L , 

Mm,)( =⋅  and for each ith, ],1[ ri∈ , component iMIiimI eee ≤≤ 0  hold,   

− nZk ∈ ;  the discrete time, the real time is  kTt = ,  kk ttT −= +1   is the sample period. At the 

initial moment  00 == kk  ,  

− T
rysignysignys )](,),([)( 1 …= ; the vector function, the elements of which are signs of the 

components of the output vector )(⋅y ,  

− zuyd SSS  and , ; the sets of all accepted desired outputs  ( )⋅dy , realizable controls  )(⋅u   and 

permitted disturbances  )(⋅z   over the time set nZ , respectively ,   

− mu R)( ∈⋅ , ( ) Mm uuu ≤⋅≤ ; the control vector, Mm uu ,  are the minimum and the maximum of 

admitted control  )(⋅u  over the time set  nZ , respectively,  

− )(⋅v ; the vector function from the Lurie class of functions ( ) ),(LNv ∈⋅   so that next conditions 

are satisfied: ( )i  )(⋅v  is continuous on R , ( )ii  (0) 0v =  and ( )iii  Lv ∈ζ
ζ )( ,  [ ]11, LLL Λ∈ , where 

are: { }121111    rllldiagL L= , ==Λ 21 LL { }22212    rllldiag L  and { }rdiag ααα    21 L=Λ ; 1≥iα  so  that  

for every ri ,,2,1 L=  are  valid  ∞≤≤ 21 ii ll  , 

− r
kd ykyzuyyky R)()](),(),(;;[ 0 ∈==⋅⋅⋅ ; the real output response, which is, at the instant  nk Z∈  , 

equal to the real output vector at the same time,  
− AIdd EkekekykyyEkykYkY ,)()()()()( },)(),()()(:{]);(;[)( =∈−=== ⋅⋅⋅⋅⋅ ; the set functions of all 

admitted vector functions y  with respect to dy  and AIE ,)()( , =⋅⋅  on the appropriate time sets  

nZ},0{  , respectively,  

− p
nZz R:)( →⋅ ; the disturbance vector function defined on the time set  nZ  ,  

− NnnZ ppn ∈= [,,0[ ; the discrete time set, pn  is the discrete time up to which tracking is realized  

− +∈R,γβ  and next are valid: 1 β< < ∞   and  ∞<≤ γβ    

− { }
r

rdiag γ
γ

γ
γ 11

1

1 −− …=Γ  ;  

− (1 1 1)T= …1  ; the unity vector of appropriate dimension 
PROBLEM STATEMENT 

In this paper we consider a digital system (called plant), which consists of an object together 
with all sensors and actuators, and whose mathematical model is described by a vector difference 
equation as1  

[ ] [ ]
⎟⎟
⎠

⎞
=

=+…+
)],(),([)(

)()(),(,),1(),(
kzkxgky

kuBbkzkxkxkxf α
   (1) 

where rmpn yuzx R ,R ,R ,R ∈∈∈∈  are the state, disturbance, input and output vectors, 

respectively. The vector functions ,RRR: )1( npnf →××+α rpng RRR: →×  and mmb RR: → , 

                                                 
1it is easy to prove that the system could be expressed in usual form: state equation and output equation, [10] 
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describe the system internal dynamics, output and control function, respectively. These functions 
satisfy the usual smoothness properties. 

Firstly, we define perfect tracking and give an assumption. 
Definition 1 (Perfect tracking [4]). The plant (1) exhibits perfect tracking if and only if 

)()( kyky d=  is satisfied for every  nZk ∈  .                                                  

Assumption 1: There exist matrices nmC ×∈ R and mrF ×∈ R  such that are 0)det( ≠CB   and 

0)det( ≠TFF .                                          

This means that the matrices B  and C  have the full rank, == rankCrankB   
( ) nmnm ≤=,min 2. The requirement expresses the necessary condition for a simultaneous 

independent control of m different output variables. 
From the above definition, the necessary condition for perfect tracking is  00 dyy =  . In this 

case the corresponding control function, obtained from (1), is determined by  
))],(),(,),1(),(([)()]([ 1 kzkxkxkxfCCBkub NNNNN α+…+= −  

where the index N  denotes nominal values of state, disturbance and control vectors, NNN uzx ,,  , 
respectively. 

However, tracking is not perfect as soon as  00 dyy ≠ , or equivalently ee 00 ≠ , i.e. desired and 
actual output in the initial moment (k=0) are not the same. Therefore it is necessary to correct the 
previous nominal control law. Evidently, the correction should be related to the instantaneous error  

)()()( kykyke d −= , such that control at  k th instant of time becomes  

)],([)()](),(,),1(),([)()]([ 11 kepFFFkzkxkxkxfCCBkub TT ⋅++…+⋅= −− α  

where a vector function )(⋅p   denotes this correction, and the matrix mrF ×∈R  is such that  

0)det( ≠TFF 3. The vector function rp R∈ , has the same dimension as the output vector )(⋅y  and 

depends on the error )(⋅e  (and/or on its derivatives and/or on its integral). The matrix  F   adjusts 
dimension of the above equation.  

By selecting the appropriate function )]([ kep , the manner of the output error change (from 
the initial to the final value) is determined, and, consequently, required quality of tracking also. In 
this paper is given an algorithm that ensures exponential change of the error from the IEe ∈)0(   to 
the FAp EEne =∈)( . 

In order for the plant (1) to accomplish practical exponential tracking the following assumptions 
must be satisfied: 

Assumption 2: All the components of the output vector  )(ky   and of the disturbance vector  

)(kz   are measurable at every instant  nZk ∈  .                 

Assumption 3: Each component of the state vector  ( )x k   is measurable4 or could be calculated 

as )](),([)( kzkygkx I= . The components of the state vector )( ikx + , α,,1L=i  are known for all 

nZk ∈      

Assumption 4: The vector functions: of the internal dynamic  )(⋅f  , of the output  )(⋅g   and of 

the control  )(⋅b   are well defined. There exist the inverse function  )(⋅Ib   of the vector function  

)(⋅b   related to  )(ku   and it is unique, i.e.  [ ]))(()( kubbku I≡  . 
DEFINITION OF PRACTICAL EXPONENTIAL TRACKING 

Definition 2 The plant (1) controlled by  ( ) uSu ∈⋅   exhibits practical exponential tracking with 

respect to ( ) ( ){ }zydAIp SSYYn ,,,,,, ⋅⋅Λ β , if and only if for every  ( ) ( ) zydd SSzy ×∈⋅⋅ ],[   there exists a 

control  ( ) uSu ∈⋅   such that  );( 00 IdI EyYy ∈   implies  

( ) ( ) ( ) ( ) ,,],,;;[ 0 nAd ZkkYzuyyky ∈∀∈⋅⋅⋅      (2) 

                                                 
2 for each real system condition m ≤ n is always satisfied, or other words, the number inputs is never greater than 
the number of states. 
3this is possible due to  r m≤ , so that is rank ( )TFF r=   
4if all components of vector  ( )x k   are measurable, then measurability of the output vector  ( )y k   in the 

assumption 3 may be omitted, because   ( ) [ ( ), ( )]y k g x k z k=  
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 and that for every  { } nZrki ×∈ ,,2,1],[ L   the 
following5:  

( ) ( ) ,,)( 0000 idi
k

idiidii yyyykyky ≥−−≥ −βα   (3) 

( ) ( ) ,,)( 0000 idi
k

idiidii yyyykyky ≤−−≤ −βα    (4) 
hold.  

The definition of practical exponential tracking 
for continuous-time system firstly6 is given in [8], 
while the definition of practical exponential tracking 
for digital systems (see Figure 1) is initially given in 
[10]. Both definitions are given with respect to the 
output vector space. 

CRITERION AND ALGORITHM 
In the criterion and algorithm, which follow below, we will use a vector functions )(⋅v , that 

belong to a class of functions V , often called ''aggregate functions'' [1]. These functions can, but need 
not, be in general Lyapunov functions. Herein, they are not Lyapunov functions because they belong to 
the Lurie class of functions7  )(LN , that are defined in Section 2.  
Lemma 

Lemma 1:  Let the discrete time system be given by a scalar difference equation  

[.,1[,,R,1
1 +∞∈∈∈

−
−=+ δ

δ
δ

nkkkk Zkxxxx           (5) 

The motion  );;( 00 xkx ⋅   of the system (5) is unique and continuous in 0x   through every  

R),( 00 ×∈ nZxk   and it is determined by  

( ) .,; )(
000

0kkxxkkx −−= δ             (6) 

Proof of lemma 1: Let be k
k cx λ= ;  R, ∈λc ; 0 ,0 >≠ λc , 

than it follows that is 1
1

+
+ = k

k cx λ . Substituting both to the 
equation (5), we obtain  

,011 1−=⇒=⎟
⎠
⎞

⎜
⎝
⎛ −

+− δλ
δ

δλλkc  

so that is k
k cx −= δ , where c  is unknown constant. This 

constant we determine using initial conditions. If  0kk =  then 

it is  0xxk = , so that is  0kc δ= . Thus, the solution of the 
equation (5) is  

.),;( )(
000

0kk
k xxkkxx −−== δ  

Therefore, the above lemma is proved. 
Criterion 

Theorem 1:  In order for the plant (1) controlled by  ( )⋅u uS∈   to exhibit practical exponential 

tracking with respect to  ( ) ( ) },,,,,,{ zydAIp SSYYn ⋅⋅Λ β   it is sufficient that for the function ( )⋅v ,  

( ) ),(LNv ∈⋅    [ ]11, LLL Λ∈  , the control  ( )⋅u   ensures8:  

[ ] [ ] ( ) ( )[ ] ,,,, ,)()( 0 zydInd SSEZzyekkevkev ×××∈⋅⋅∀Γ−=Δ   (7) 

and that for every  { }ri ,,2,1 L∈    

.
iMI

iMA
i

imI

imA

e
e

e
e

≤≤ α            (8) 

holds. 

                                                 
5by  ( )iy k   is denoted ( ) ( ) ( )0[ ; ; , , ]i i dy k y y u z⋅ ⋅ ⋅   
6definition of exponential tracking is the first given in [9], but for other types of tracking 
7some of functions that belong to the Lurie class are: sin( ), ( ) [ / 2, / 2]π π⋅ ⋅ ∈ − , sinh( )⋅ , tanh( )⋅ ,  1/ 3| ( ) | ( )sign⋅ ⋅ , 3( )⋅ , L   

where is ( ) R⋅ ∈   
8in the next equations by  Δ   is denoted first finite difference and ( ) ( ) ( )( )⋅⋅= zuyekeke do ,,,,   

 
 

( )AY k

( )y ⋅

IY

( )dy ⋅

pn

( )0 0
k

i di iy yα β −−

0  
Figure 1. Practical exponential tracking 

1il

1i i ie lα

1i ie l

( )i iv e
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Figure 2. Functions from a class V 
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Proof of Theorem 1:   Let us observe the behavior of the system (7) for arbitrary values of the 
desired output vector ydd Sy ∈⋅)( , of the disturbance vector zSz ∈⋅)( , of the initial error vector 

IEe ∈0   and for an arbitrary component },,2,1{ , rii …∈ . Now, according to the definition of the 

matrix Γ , the vector equation (7) can be expressed in the scalar form, for the i th component , as 

( )[ ] )].([1 kevkev ii
i

i
ii γ

γ −
−=Δ                            (9) 

 The solution of this equation, according to the Lemma 1, becomes  

( )[ ] .0
k

iiii vkev −= γ       (10) 

Further, we analyze the behavior of the system (7) for various values of the initial error 0 ie  

and for nZk∈∀ .  First we consider the case when it is 00 ≥ie :  

Since, for the Lurie class of the functions )()( LNv ∈⋅  the following is valid (see Figure 2),  

( ) iiiiiii elevel 11 α≤≤ ,            (11) 

what together with  ∞<≤ iγβ  (see definitions in Section 2.)  and (10)  gives  

( ) .00
k

ii
k

iiii eeke −− ≤≤ βαγα                  (12) 

Since  iMIi ee ≤0  is true, then the above equation becomes  

( ) .k
iiMIi eke −≤ βα                  (13) 

Based on the equations (8) and (13) we find  
( ) .; n

k
iMAi Zkeke ∈∀≤ −β                  (14) 

This equation expresses exponential decreasing of the error )(⋅ie  from the initial value  0ie   to 

the zero value, consequently the error )(kei  remains into the set iAE .  According to the definition of 

the set AY , that means  

( ) ( ) ( ) ( ) .,],,;;[ 0 nAd ZkkYzuyyky ∈∀∈⋅⋅⋅               (15) 
Therefore, the first condition of the Definition 2 is satisfied. 
Now, using the equation (12), and replacing  )(kei   and  0ie   with  )()( kyky idi −   and  00 idi yy −  

, respectively, we get  

( ) ( ) .,)( 0000 idi
k

idiidii yyyykyky ≥−−≥ −βα                  (16) 

In the similar way, for the case 00 ≤ie , we obtain  

( ) ( ) ( ) ( ) ,,],,;;[ 0 nAd ZkkYzuyyky ∈∀∈⋅⋅⋅              (17) 
and  

( ) ( ) .,)( 0000 idi
k

idiidii yyyykyky ≤−−≤ −βα          (18) 
Thus, we found out that the equations (15), (16), (17) and (18) are valid for an arbitrarily 

chosen  zydIidi SSrEzyie ×××∈⋅⋅ },,2,1{)](),(,,[ 0 L , and consequently for each mentioned value. 

Accordingly, we may finally conclude that the plant (1) exhibits practical exponential tracking in the 
sense of the Definition 2. Therefore, the theorem is proved.  
Algorithm 

Theorem 2:  Let the assumptions (1-4) hold, and let the set ( ) ( ){ kuuuS mu ≤⋅= 1: }1Mu≤ , with 
the control function  

[ ] ( ) [ ] ( ) { }
( ) ( )[ ] ,,,,

,)]1([)]1([)(),(,),()(

0

11

zydInd

TT

SSEZzyek
kevkevFFFkzkxkxfCCBkub

×××∈⋅⋅∀
−Γ+−Δ++⋅=

−− αL        (19) 

where is  ( ) ),(LNv ∈⋅    [ ]11, LLL Λ∈   . 
The plant (1) controlled by  ( ) uSu ∈⋅  exhibits practical exponential tracking with respect to  

{ ,,Λpn ( ) ( ) }zydAI SSYY ,,,, ⋅⋅β   if for every  { }ri ,,2,1 L∈    

.
iMI

iMA
i

imI

imA

e
e

e
e

≤≤α                  (20) 

holds. 
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Proof of Theorem 2:   Multiplying the first equation of the system (1) by  the  matrix  CCB 1)( −   
from  left-hand side, we get  

[ ] ( ) [ ].)(),(,),()( 1 kzkxkxfCCBkub α+⋅= −
L           (21) 

Subtracting this equation from the equation (19) we obtain  

( ) { } .0)]1([)]1([1
=−Γ+−Δ

− kevkevFFF TT        (22) 

After multiplying the above equation by matrix  F   from the left-hand side and shifting it by 
one sampling period we have  

( )[ ] ( )[ ] ( ) ( )[ ] .,,, , 0 zydInd SSEZzyekkevkev ×××∈⋅⋅∀Γ−=Δ                   (23) 

This equation together with the condition (20) and the proof of the Theorem 1 proves this Theorem. 
SIMULATION RESULTS 

For simulation of control algorithm that is proposed in Theorem 2, we use the manipulator with 
three rotating joints (three DOF), see Figure 3. Based on the technical features and the desired output 
behavior we adopt next values: 

• the time of tracking  sec5.1=τ ;  the sample period  sec10 3−=T   (it is selected by using 
Shenon's Theorem and linearized model of the manipulator). Based on this time we define discrete 
time pn  and the time set nZ  as: 1500=pn , [,0[ pn nZ = ,  

• the desired dynamical behavior of the output is determined by the set  

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎜
⎜
⎜

⎝

⎛

+=
=
=

== −

−

ty
ey
ey

tyyS

d

tt
d

tt
d

ddyd

2.08.0
)sin(2.1
)cos(9.0

)(:

3

1.0
42

1.0
41
π

π

 

• the desired quality of tracking over selected time set  nZ   is 

determined by the initial  IE   and the actual  AE   output error 
sets as:  

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≤≤

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

==
05.0
08.0
10.0

05.0
08.0
10.0

: eeEE AI
 

where  ( )Te 04.006.008.00 −=   is selected initial output error 
vector9.  
• the sets of admitted disturbances  zS   and realizable controls  

uS   are given as:  

][)(:

3

2

1

N
z
z
z

tzzSz
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==  

where components of the vector  z   are:  

( ) ( )[ ]

)
2

sin(2010

10sin3cos50

1,5
15.0,20

5.0,0

3

3
2

1

tz

tsigntez

t
t

t
z

t

π
+−=

−=

⎪
⎩

⎪
⎨

⎧

>−
≤<−

≤
=

−  

and the set  uS   is  

{ } ][160)(160: NmtuuSu ≤≤−=  

• the manner of the exponential changes of the output error vector (from the initial value toward 

                                                 
9all dimension of the output errors are in  ][m   

 
 

x y

z

1q

2q
3q

2l3l

1l

 
Figure 3. Manipulator with 

three rotating joints 
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the zero value) is determined by the values of the next coefficients: 1321 === ααα   and 

002.1=β . Based on these values we select coefficients iγ , as: ,1 βγ =  βγβγ 01.1,02.1 32 == . 

Further, using these data we calculate matrices  Λ   and  Γ   as:  
{ }
{ }.0119.00216.00020.0

  111
diag

anddiag
=Γ
=Λ

       

in this example matrix  )204040(diagB = , the matrix  F   we determine (see [10] and its 

references) as  11 ])()([ −−= BqAqJF , where matrix  )(qJ   is Jacobian and  )(qA   is matrix of inertia. 

The vector  Tqqqq )( 321=   has components  3,2,1, =iqi , where  iq   are free rotation angles of 

the joints. Also, in the above proposed algorithm as aggregate function  Vv∈  , for each component 

of the output error vector, we use function )(|)(|3 ⋅⋅= signv  so that is  3 |)(|))(()]([ kekesignkev iiii =  . 

The results of the simulation of the proposed algorithm in Theorem 2, by using above selected 
data, are given in Figure 4. 
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Figure 4. Results of simulations of the proposed algoritm in Theorem 2 

CONCLUSIONS 
In the paper we consider practical tracking of nonlinear time-invariant digital system. We give 

and prove the criterion and the control algorithm that ensure practical exponential tracking. The 
tracking properties are realized with respect to the prespecified sets of the times, of the permitted 
outputs and of the errors, of the admitted disturbances and of the realizable controls. The controls 
are synthesized using a digital computer which plays a role of a controller, and using negative output 
feedback principle, also. 

From the results of the simulation, we see that the control which is based on the proposed 
algorithm forces the plant to exhibit practical exponential tracking and verifies the above proposed 
theory. 
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