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ABSTRACT: The single regime engine is a new concept. By functioning in single regime running the 
optimization of fuel consumption and emissions is easier to be done. Another particularity of this 
engine is that it has no idle functioning. It has also a start-stop system. Basically, the thermo-
hydraulic generator is an alternative to the actual propulsion systems for cars. 
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INTRODUCTION 

The single regime running thermal engine transforms the energy produced by the burning of a 
fuel (gasoline, diesel fuel, unconventional fuel) in mechanical energy, generally under the form of 
rotational movement. The main parts of the engine are: the single regime running thermo-hydraulic 
generator TM, the hydraulic accumulator AH and the hydraulic motor MH (Figure 1).  
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Figure 1. The constructive scheme of the thermal single regime running engines 

The engine includes also the fuel tank RC and the tank for the hydraulic liquid RH. The 
monoregime thermo-hydraulic generator transforms the thermal energy produced by the burning of a 
fuel into hydrostatic energy, stoked in a hydraulic accumulator. The supply with energy of the 
hydraulic motor is done through the engine’s command system SCM. The hydraulic engine transforms 
the hydrostatic energy into mechanical energy that’s necessary to run the working machine. 
The main part of the monoregime thermo-hydraulic generator is formed by two cylinders: the motor 
cylinder CM and the Hydraulic cylinder CH. The two cylinders are coaxially mounted and inside them 
the piston has rectilinear alternative movement (Figure 2). 
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Figure 2. The functioning scheme of the thermal single regime running engines 

The free piston is the only mobile part, without articulating elements. The start-stop of the 
piston at the end of the stroke is possible, without negatively affecting the engine functioning, 
because the speed (and the kinetic energy respectively) is zero in these points. Due to the piston 
movement, between the cylinder’s walls and the piston four chambers with variable volume are 
formed: the thermal chamber T, the compression chamber T and the hydraulic chambers H1 and H2. 
The piston movement is done under the action of the pressure forces produced by the gases inside the 
thermal and the compression chambers and the pressure forces produced by hydraulic liquid in 
chambers H1 and H2. The cycle processes take part in the thermal chamber and in the compression 
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chamber the intake process for the boosting or an accumulation of pneumatic energy can be 
developed. In the hydraulic chambers are taking place the intake-delivery processes of the hydraulic 
liquid. The piston movement is coordinated by the automatic command system (SAC). The information 
regarding the piston position are furnished by the transducers TH. The piston stroke is between pvm 
(the point of minimum volume) and pvM (the point of maximum volume). The forces on the piston are 
FM produced by the gas pressure inside the thermal and the compression chambers and force FH 
produced by the pressure of the hydraulic liquid inside chambers H1 and H2. During a cycle FM has 
great variation (exponentially) and force FH is almost constant.  

The thermodynamic processes of the thermo-hydraulic generator cycle are identical with those 
from the internal combustion engines. Same as in ICE, the thermal cycle of the thermo-hydraulic 
generator can be done in two or in four strokes of the piston. 

Single regime running engines are in the category of thermo-hydraulic hybrid engines. At these 
new engines two energy transformations are taking place: the thermal energy is transformed into 
hydrostatic energy (through the thermo-hydraulic generator) and the hydrostatic energy is 
transformed into mechanical energy (through hydraulic motors). The single regime running engines 
are characterized by the following particularities: single regime running (monoregime – the quantity 
of fuel introduced in the cylinder in every engine cycle is the same), no idle. It’s estimated that 
following advantages can be obtained (regarding present engines): reduced fuel consumption and 
emissions (it’s easier to optimize one regime instead of an infinity), constructive simplicity and 
greater reliability. Also, the single regime running engine can overtake, totally or partially, the 
transmission functions (the variation of the torque, rotational speed and rotational sense), including 
brake energy recovery. 
FORCES AND MECHANICAL WORK 

The piston PL has an alternative rectilinear movement inside two cylinders (engine and 
hydraulic), coaxially assembled (Figure 3). The engine’s cylinder (with the bore dm) together with the 
piston is forming two chambers with variable volumes: the thermal chamber T (where the 
thermodynamically processes of the thermal cycle take place) and the compression chamber C (where 
intake processes of fresh charge can take place). The hydraulic cylinder (with the inside diameter dh) 
together with the piston forms two variable volume chambers H1 and H2, called hydraulic chambers, 
where the suction-discharge of hydraulic liquid phenomena are produced. The pistons inside the two 
cylinders are connected by a rigid rod (with the diameter dt). The distance between pvm and pvM is 
the stroke of the piston. The instantaneous position of the piston in respect with pvM is noted with x. 

During one cycle the piston realizes two strokes: the useful stroke (when the hydrostatic energy 
is accumulated) and the resistant stroke (hydrostatic energy is consumed). The movement of the 
piston between the two extreme points is made under the action of the following forces: Fm [N] – the 
useful force developed in the engine’s chambers (formed by the pressure force of the gases Fgm and 
the friction force Ffm); Fh [N] – the force developed in the hydraulic cylinder (formed by the pressure 
force of the hydraulic liquid Flh and the friction forces Ffh). The intervals [xk, xk+1] are chosen so that 
the functions of variation of the forces that action on the piston PL to be continuous inside one 
interval.  

The force of gases Fgm inside the engine’s cylinder that actions on the piston in an any point x∈ 
[xk  xk+1] is given by the relation:   

)AA(pApF tmgcmgtgm −⋅−⋅=     [N]                                          (1) 

where: pgt [Pa] – the pressure inside the thermal chamber; pgc [Pa] – the pressure of the gases inside 
the compression chamber; Am [m2] / the area of the cylinder inside section; At [m2] – the area of the 
piston’s rod section.  

 
Figure 3. The loading scheme  

The pressure pgt of the gases inside the thermal chamber T in position x∈ [xk, xk+1] of the piston 
PL is obtained with the relation: 
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where: ptk – the pressure inside the thermal chamber in point xk; VTk – the instantaneous volume of the 
thermal chamber in point xk; VT – the instantaneous volume of the thermal chamber in point x; VT0 – 
the instantaneous volume of the thermal chamber in point x0; bt=Am/VT0  - the coefficient of the 
thermal chamber; ntk – the polytrophic index of the gases inside the thermal chamber in the interval x 
∈ [xk  xk+1].   

The pressure pgc of the fresh charge inside the compression chamber C in position x ∈ [xk, xk+1] 
of the piston PL is:   
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where: pck – the pressure of the fresh charge inside the compression chamber in point xk; VCk – the 
instantaneous volume of the compression chamber in point xk; VC – the instantaneous volume of the 
compression chamber in point x;  VC0 – the instantaneous volume of the compression chamber in point 
x0; bc=(Am-At)/VC0  - the coefficient of the compression chamber; ntk – the polytrophic index of the 
gases inside the compression chamber in the interval x ∈ [xk  xk+1].  

The polytrophic indexes nt,c
 of the gases inside the thermal chamber or the compression 

chamber can take different values in function of the thermal processes that take place in these 
chambers: nt,c=0 – constant pressure processes (p=ct.); nt,c=1,00 – isothermal processes (T=ct.);   
nt,c=1,32-1,39 – compression processes; nt,c=1,25-1,32 - detention processes; nt,c=∞ - constant volume 
processes (V=ct.). 

If relation (1) is correlated with relations (2) and (3) it can be obtained the calculus formula for 
the force Fgm developed by the pressure of the gases inside the engine’s cylinder that actions on the 
piston in an any point x ∈ [xk  xk+1]:     
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where: etk – the coefficient of the force produced by the pressure of the gases inside the thermal 
chamber T; eck - the coefficient of the force produced by the pressure of the gases inside the thermal 
chamber C. 

The values of the coefficients etk and eck are determined with the relations: 
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Notation: pes – the men elastic pressure of the rings; psi – the radial pressure on the ring i. It’s 
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The friction force Ffm between the engine’s cylinder and the piston’s rings can be established 
with the relation:  
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where: μsm – the friction coefficient; nsm – the number of rings in the engine’s cylinder; bsm – the 
height of the ring; rfm = (4⋅μsm⋅bsm)/dm – the friction ratio in the engine’s cylinder. 

The total force developed by the pressure of the gases inside the engine’s cylinder for x ∈ [xk, 
xk+1] is obtained with the following relation: 
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" - "    - if the piston moves from pvm to pvM;  
" + "   - if the piston moves from pvM to pvm; 

The mechanical work developed in the engine’s cylinder in the distance (x - xk), for x ∈ [xk, 
xk+1], if the piston is moving from pvM to pvm, is:  
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The function pgt(x) of variation of the pressure in chamber T and the function pgc(x) of the 
variation of the pressure in chamber C are given by the relations:  
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The force Flh in any point x ∈ [xk, xk+1] in the hydraulic cylinder produced by the liquid’s 
pressure is determined with the following relation:  

    )AA(pApF th2hh1hlh −⋅−⋅=                                                      (8) 
where: ph1 [Pa] – the pressure inside chamber H1; ph2 [Pa] – the pressure inside chamber H2; Ah [m2] – 
the area of the section of the hydraulic cylinder. 

Notations: pha, phr – the pressure of the hydraulic liquid inside the accumulator and inside the 
tank, respectively; λh1, λh2 – the hydraulic resistance coefficient in chambers H1 and H2, respectively; 
l1, l2, d1, d2 – the lengths and the diameters of the connecting pipes with chambers H1 and H2, 
respectively. Pressure ph1 is calculated with Bernoulli’s relation: 
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Similarly, the pressure ph2 is:  
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By correlating relation (8) with relations (9) and (10) results the formula for the calculus of 
force Flh produced in any point x ∈ [xk  xk+1] by the pressure of the liquid from the hydraulic cylinder:  
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Coefficients ehk, ev şi em are determined with the relations: 
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The friction force Ffh in the hydraulic cylinder is produced by: the friction with the rings which 
have the height bsh, by the viscous friction in the hydrostatic bearing which has the witness bl and by 
the friction between the rod and the 
gasket with the witness bgr (Figure 4). 

The friction force Ff.sg between 
the piston’s rings and the interior 
surface of the hydraulic cylinder is 
directly proportional with the radial 
force that actions on the rings 
(produced by the mean elastic pressure 
pes of the rings and by the pressure psi of 
the hydraulic liquid. Experimentally, it 
was been established that a number 
nsh=2 of rings are sufficient and that 
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Notation: μsh – the friction coefficient between the rings and the hydraulic cylinder surface. The 
relation for the calculus of the friction force Ff.sg [N] is:   
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Notations: η [kg.s/m2] -the dynamic viscosity of the hydraulic liquid; τt [N/m2] – the tangential tension 
between the layers of fluid; dt [m] – the rod’s diameter; w [m/s] – the liquid’s speed through the 
annular slot of the hydrostatic bearing. From the balance equation of the elemental ring with the 
length bl and thickness δy from the annular slot of the hydrostatic bearing results the relation for the 
calculus of the tangential tension between the layers of liquid τt: 
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Figure 4. The scheme of the sealing inside the hydraulic 

cylinder 
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It can be observed that the maximum tangential tension τt max is obtained from relation (13) for 
y=0. The pressure ph2 is approximated with the pressure p2(a,rz). The viscous friction force Ff.vs in the 
hydrostatic bearing is: 
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Notation: μgr – the friction coefficient between the sealing gasket and the rod. The relation for the 
calculus of the friction force Ff.gr is: 

           rzgrtgrgr.f pbdF ⋅⋅⋅⋅= πμ     [N]                                             (15) 

Notation: υ [m2/s] - the kinematic viscosity of the hydraulic fluid. By correlating relations (12), (14) 
and (15) one can obtain the formula for the calculus of the force Ffh in the hydraulic cylinder in any 
point x ∈ [xk  xk+1]: 

           pfvfkgr.fvs.fsg.ffh weeFFFF ⋅±=++=    [N]                                    (16) 

Coefficients efk şi efv are determined with the relations: 
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The value of the force Fh for x ∈ [xk  xk+1]  produced by the pressure of the liquid inside the 
hydraulic cylinder is calculated with the following relation: 
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Notation: wpmax [m/s] – the piston’s maximum speed during one stroke. In the point in which the 
acceleration is zero (dwp/dτ=0, wp=wpmax), relation (17) for the calculus of force Fh in the hydraulic 
cylinder is:  
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The mechanical work developed by forces in the hydraulic cylinder on the distance(x-xk), for x ∈ 
[xk  xk+1] (if the piston moves to pvM or x ∈ [xk-1  xk] (if the piston moves to pvm) is:  

∫ ∫ ∫ ∫ ⋅⋅+⋅⋅±⋅⋅±−⋅±=⋅=
x

kx

x

kx

x

kx

x

kx

p
m

2
pvpfvkfkhkhh dx

d
dw

edxwedxwe)xx()ee(dxFL
τ

 

Notation: wpm the mean piston’s speed on the interval [x xk]. The formulas for the calculus of the 
integrals are the following:  
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The relation for the calculus of the mechanical work Lh in the hydraulic cylinder is:  
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If relations (7) and (19) are correlated, it is obtained the formula for the calculus of the total 
mechanical work Lmt developed by the pressure forces on the distance (x-xk) for x ∈ [xk  xk+1] if the 
piston PL is moving towards pmV and for x ∈ [xk-1  xk] if the piston PL is moving towards pmv.  
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The calculus of the total mechanical work is necessary to determine the dimensional parameters 
of the engine and the kinematic parameters of the piston. 
THE CALCULUS OF THE DIMENSIONAL PARAMETERS 

For the calculus of the dimensional parameters (the piston diameter dh, the rod diameter dt  

and the piston’s mass mp) the theorem of kinetic energy for one stroke of the piston is applied. The 
variation of the kinetic energy for one stroke of the piston is zero. 

The theorem of the kinetic energy in the useful stroke (pmv → (pmV) is applied and the viscous 
friction forces are neglected. Results: Lmt=0 ⇒    
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The theorem of the kinetic energy in the resistent stroke (pmV → (pmv) is applied and the 
viscous friction forces are neglected. Results: Lmt=0 ⇒   
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The solution for the system of equations (1.21) and (1.22) represents the value of the hydraulic 
cylinder diameter and the value of the rod’s diameter dt. 

The piston’s mass mp is established at a value that should limit the maximum speed of the 
piston in the useful stroke at wpmax. The acceleration of the piston in the point of maximum speed xa 
is zero. In this point the forces developed in the engine’s cylinder and in the hydraulic cylinder are 
equal. The following relation results: 
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for the calculus of distance xa ∈ [xk  xk+1] is obtained: 

          
maxpwpwhckn

ac

ckckc
tkn

at

tktktfm F
)xb1(
e)1n(b

)xb1(

e)1n(b)r1(
=

=
⋅−

⋅−⋅
−

⋅+

⋅−⋅⋅−
                        (24)  

The theorem of kinetic energy is applied between the initial position x=0 and the final position 
xa of the piston and the relation for the calculus of the piston’s mass mp is obtained: 
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The piston mass increases direct proportional with the acceleration mechanical work and 
decreases inversely proportional with the square of piston’s maximum speed.  
THE CALCULUS OF THE KINEMATIC PARAMETERS 

The relations for the calculus of the kinematic parameters are determined by applying the 
theorem of kinetic energy between two points of the piston’s stroke. If the theorem of the kinematic 
energy id applied between an initial point xk and any point x ∈ [xk  xk+1] (if the piston moves towards 
pmV)  or x ∈ [xk  xk-1] (if the piston moves towards pmv) the following equation it’s obtained:  

          mt
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pp

2
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2
)x(wm

2
)x(wm

=
⋅

−
⋅

                                               (26) 

For the calculus of equation (26) the method of the finite differences is applied. The interval 
[xk  xk+1] is divided in n subintervals with the length δxi = (xk+1 - xk) / n = xi - xi-1, i = 1, 2,..., n, x0 = xk, 
xn = xk+1. In the same way, the interval [xk  xk-1]  is divided in n subintervals with the length δxi = (xk-1 - 
xk) / n = xi - xi-1, i = 1, 2,..., n, x0 = xk, xn = xk-1. 
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Notation: Δwi = wi+1 - wi the difference between the final speed and the initial speed in subinterval 
δxi. The mean speed wmi in the subinterval δi is: 

            i
ii1i

mi w
2
w

2
www +=

+
= + Δ

                                                    (27) 

On the subinterval δxi is applied the theorem of the kinetic energy, resulting the equation: 
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2
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i
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2
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2
1ip −
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⋅ ++ δm                       (28) 

where: ifkhkiigcigcckiigtigttkfmki x)ee()]xx(f)x(f[e)]xx(f)x(f[e)r1(L δδδ ⋅±−+−⋅++−⋅⋅= m        

The coefficient em represents the mass of the moving liquid. Notation: min – the inertial mass 
(the mass in movement). The mass min is obtained with the relation: 

                     min = mp + em     [kg]                                              (29)    
After processing, equation (28), has the form: 

   0rwr4v)rw(2w i2ii1ii1i
2
i =−⋅⋅±⋅⋅+ ΔΔ m                                   (30)                   
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The solutions for the equation (30) are: 
1. If the piston PL is moving from pmv to pmV: 

        → i2
2

i1ii1ii r)rw()rw(w +−++−=Δ                                               (31) 
2. If the piston PL is moving from pmV to pmv: 

        ← i2
2

i1ii1ii r)rw()rw(w ++−−−=Δ                                               (32)           

The movement of the piston in the interval δxi is approximated with a uniformly accelerated 
movement and the duration of the movement Δτi on this interval is:  

    
mi

i
i1ii w

xδ
τττΔ =−= +   [s]                                                    (33) 

The acceleration ai of the piston on the interval δxi (considered to be constant) is: 

     
i

i
i

w
a

τΔ
Δ

=   [m/s2]                                                       (34) 

CONCLUSIONS 
In conclusion, the kinematic 

parameters of the piston have been 
determined also in function of the 
viscosity of the hydraulic fluid. In this 
way, it’s possible to study the 
influence of the viscosity of the 
hydraulic fluid on the characteristic 
points of the piston’s stroke that 
influences the functioning of the 
thermo-pump.  

The results of this research 
permitted the development of the 
design methodology of the single 
regime running engines. In project 
financed by the Hungarian-Romanian 
Cross-border Programme HURO 2007-
2013 the design of an experimental 
model was developed, necessary to 
validate the results. 

In Figure 5 is presented the 
constructive scheme of the thermo-
hydraulic generator.  

The hydraulic plate is practically 
the command and control system. It 
includes valves and distributors. The 
hydraulic plate commands the start-
stop system for the thermal engine and the supply of the hydraulic motor. 

For reducing vibrations generated during the functioning, the base plate is mounted on 
dumpers. 

 
Figure 5. The constructive design of the thermo-hydraulic 

generator 
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Figure 6. The free piston design 

The design of the free piston is presented in Figure 6. The piston rings lubrication is assured 
through a channel manufactured along the piston, oil pressure being controlled by a valve. The start-
stop system is controlled through the pressure inside the hydraulic accumulator. If the pressure 
reaches a maximum value, the piston automatically stops at the end of the stroke. As the pressure 
drops, when the minimum value is reached, the automatic control system SAC commands the start of 
the functioning of the thermal engine. 
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