

© copyright FACULTY of ENGINEERING ‐ HUNEDOARA, ROMANIA 51

1. Mihaylo Y. STOYCHITCH

AN ALGORITHM OF LINEAR SPEED CONTROL OF A
STEPPER MOTOR IN REAL TIME

1. FACULTY OF MECHANICAL ENGINEERING, UNIVERSITY OF BANJA LUKA, VOJVODE STEPE 71, 78000 BANJA LUKA, BOSNIA
AND HERZEGOVINA

ABSTRACT: In this paper we consider the problem of realization of linear speed profile of stepper
motors in real time. The general case is considered when change of speed in the acceleration and
deceleration phases is different. An algorithm of the real time speed control is proposed. Comparing
this algorithm with the other ones, it was shown that the algorithm is better than the others with
respect to the accuracy of speed, but at the same time it is slower. The practical realization of this
algorithm, using Arduino platform, is also given.
KEYWORDS: speed control, control algorithm, stepper motors, Arduino

INTRODUCTION

Stepper motor is an electromechanical device that converts electrical digital pulses into
mechanical shaft rotation. Many advantages are achieved using this kinds of motors, as: (i) precise
positioning and repeatability of movement, (ii) the motor has full torque at standstill (if the windings
are energized), (iii) very reliable and easy maintenance since there are no contact brushes, and (iv) a
wide range of rotational speeds can be realized since the speed is proportional to the frequency of the
input pulses. Some disadvantages of these motors are: (i) resonance can occur if not controlled
properly, and (ii) not easy to operate at
extremely high speeds, [1,2].

An important issue about stepper
motors is that they are usually used in an
open control loop. This means that the
motor control system has no feedback
information about the position, which
eliminates expensive sensing and feedback
devices.

Many systems with stepper motors
need to control the speed using values of
acceleration and deceleration defined in
advance. Herein we will analyze the
general case, when change of speed in the
phase acceleration and deceleration is linear and different (ramp speed profile). In Fig. 1 the relation

between acceleration][rad/sec 2a , deceleration][rad/sec 2d , speed [rad/s] v and position [rad] s is
shown.

Since the stepper motor makes steps in discrete time (after each pulse) and the move of every
step is constant, the change of speed is achieved by changing the time interval between successive
steps (pulses). It means that the main problem of speed control is to determine instants of the time it
(in [sec]) when pulses (steps) are generated. If speed v is constant .constv = (independent of whether
it is large or small), it is very easy to determine these instants (equivalently, generate the pulses). In
this case the time delays itδ , between two arbitrary successive pulses, are the same and they are
given as, / .it v constδ α= = , where [rad]α is the angle of the rotation motor shaft for every step. But,
if the speed is variable, .iv const≠ , it is more difficult to determine the instants when we need to
generate pulses because the time delay between two successive pulses is changed, / .i it v constδ α= ≠ .
In the case when acceleration/deceleration is constant, the speed is changed linearly, but the time

acceleration a

 a,
 d,

 v,
 s

deceleration d

time t

positi
on s

desired speed v

,a aT n
,d dT n

,ad adT n

,T n

a

a

sMax

d

d

0

Fig. 1. Change of speed, position and acceleration

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 52

interval itδ between two adjacent pulses is not linear. So, we need to calculate time itδ , which
ensures linear change in speed. It is shown for the acceleration phases in Fig. 2.

Depending on the method used to calculate this
time, generally, there are two groups of algorithms–
two methods, named as: “time per step” and “steps
per time”, that are described in [3,4,5] and [6,7],
respectively. The first group of algorithms is mainly
realized by using a microcontroller, while the second
group is suitable for realization by using FPGA (field
programmable gate array) circuits. Both of the above
groups of algorithms generate pulses in real time.
However, there are alternate techniques where the
pulses are generated based on the previously entered
table of data, which include all parameters of motion.
Using these techniques we can not calculate the time when pulses are generated in real time, because
any change of some parameters of the motion imply a change above table of data. Today, these
techniques lose their importance, because by increasing microcontroller’s speed it becomes possible
to perform all the necessary computation within short time, which is less than itδ .

In the sequel of the paper we give a new real time algorithm that belongs to the first group of
the above mentioned algorithms. The practical implementation of this algorithm that is based on the
Arduino platform of the Atmel microcontroller ATMega 328 is also given.
ALGORITHM

As we emphasized earlier, we observe motion with the ramp speed profile, i.e.
.,a const= ., , 0d const a d= > , and let .a d≠ In this case, in order to determine control algorithm it

means to solve two problems: to calculate the instants of time when pulses are generated and
calculate the characteristic points of the motion in which the algorithm changes its behavior
(trajectory planning), see Fig. 1. We will design a controller that solves both problems.
Calculate time when the pulse is generated

The first pulse (step) controller generates at the start of motion, or at the start of the state of
acceleration, at the time 0t , see Fig. 3. After the first
pulse is generated, the controller needs to calculate
time period 0tδ until the next pulse, wait until this
period has elapsed, and then generate the next pulse,
at time 1t . This will go on until the desired position is
achieved, or in other words, the desired number of
pulses has been generated. At the start, the speed is

ov , and it retains its value until the moment 1t when it
becomes 1v , at the moment 2t becomes 2v , and so on.
As after each pulse the motor makes one step for the
angle α , then the following is valid

i i i
i

v t t
v
αα δ δ= ⋅ ⇒ = , (1)

where the iv is speed at an arbitrary instant of time it and itδ the time delay between two successive
instants of time 1 and i it t− . In the case when the controller is realized by using a microcontroller, the
required time delay itδ is implemented using counter ic that counts impulses of known frequency f ,
so /i it c fδ = is valid . Now (1) becomes

 i
i i

i

c fv v
f c

αα = ⇒ = . (2)

Based on the above considerations, the speed is changed only at the discrete time it . But, since
inertia always exists, thus we can assume that the speed iv between two arbitrary successive instants
of time 1it − and it , 1i ≥ , changes linearly (see dashed light lines in Fig. 3). Thus, the speed iv at the
arbitrary instant of time it , and in the phase of acceleration, becomes

 1 1, 1i i iv v a t iδ− −= + ⋅ ≥ . (3)
Using (2) and (3), the value of the counter ic becomes

1i1ii
i tav

f
v
fc

−− ⋅+
==

δ
αα , (4)

.v const=

.v const=

.v const�

0 1 /t c fδ = 2 /c f1t0t 2t
t

t

t

3t
3 /c f

low speed,

high speed,

accelerating,

Fig. 2. Constant speed and accelerating step

sequences

a d

ot

1iv −
iv

α α

α

1v

ov

ot

1t

1t

o
o

c
t

f
δ =

v

/ of cα

1/f cα
1/ if cα −

/ if cα

L

L

L

M

L
1c
f

it 1it +

1it +

1it −

1itδ −
itδ

1it − it
time t

time t

Fig. 3. Calculate the time when pulse is

generated

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 53

which, after substituting 1 1/i iv f cα− −= and 1 1 /i it c fδ − −= , finally becomes

2a2
1ia

1i

1i

1i

i f
aR ,

cR1
c

f
ca

c
f

fc
αα

α
=

+
=

+
=

−

−

−

−

. (5)

In a similar way, in the phase of deceleration, we obtain

2d2
1id

1i
i f

dR ,
cR1

cc
α

−=
+

=
−

− . (6)

From (5) and (6) we calculate the time delay ic (or equivalently itδ) based on the previous time
delay 1−ic , 1≥i , which is already known. Further, it implies that it is necessary to determine the
initial time delay oc .
Calculate the initial time delay

In order to determine the initial time delay oc , we observe motion during the first step. The
first pulse (that is generated at the time ot) initiates the first step for the angle α , where α is given

as 21/ 2 oa tα δ= ⋅ (because the initial speed 1ov is zero, 1 0ov =). It implies that the speed at the end of

the first step is 11 2ov a t aδ α= = . Let speed ov be the mean value of the initial 1ov and the final 11v

speed value in the first step, so the following () =+= 1115.0 vvv oo aα25.0 is valid. This, together with
(4), gives

a
f

a
fco

α
α

α 2
2
2

== . (7)

In the case when speed is constant, .v const= , the time delay ic is determined (using (4)), as
/i ic f vα= . For the maximum speed Mv v= , the time delay i mc c= is minimum, and it is given as,

M
m v

fc α
= . (8)

Simulation and correction of the algorithm
In Fig. 4. and Fig. 5., the results of simulations of the algorithm that is proposed by Eqs. (5),

(6), (7) and (8) are given (in Fig. 4 whole profile and in Fig. 5 only a part of the profile in the
acceleration phase). These results are given for a stepper motor with 64 steps per round, and with the
following parameters of motion: 3=Mv , 4=a , 2=d .

Fig. 4. Results of simulation for different types of

algorithms
Fig. 5. Results of simulation –the part of phase

acceleration
We have also compared different types of algorithms, as: this algorithm (speed v - dashed lines)

and algorithm that is widely used, and which is proposed in [4] (speed av - light solid line). It is easy
to see that they are nearly the same except in the initial steps (one or two steps). In both cases, the
step speed is greater than the linear speed (see Fig. 5). In order to decrease the difference from step
speed and linear speed, we need to introduce some corrections. If in the acceleration phase, after the
time delay ic is calculated by (6), we introduce correction in the form

5i1,
i
08.01cc ii ≤≤⎟

⎠
⎞

⎜
⎝
⎛ += , (9)

we obtain the new step speed kv - dark solid line in Fig. 5. We can see that the correction step speed

kv is much better than the previous uncorrected step speed v or av (i.e. difference between the step
speed kv and the linear speed lv at the time it is significantly smaller). In the same way, correction

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 54

in the last five steps of the deceleration phase is done, so that the time delay in the last steps of this
phase is given as

5in1,
in

08.01cc ii ≤−≤⎟
⎠
⎞

⎜
⎝
⎛

−
+= , (10)

where the total number of steps during the desired motion is denoted by n , see Fig. 7.

a dsp
ee

d

step

dv

rv dv

an

an

adn
dn dnn

n

Fig. 6.The speed error Fig. 7. Trajectory planning

The speed error (it is defined as the difference between analog and step speed) for the cases:
this algorithm (uncorrected and corrected) and the algorithm in [4] is shown in Fig.6. (error in the
first step is omitted).
TRAJECTORY PLANNING

We need to determine characteristics points of the ramp speed profile where the algorithm
changes. Continuous motion and in the case when acceleration and deceleration are the same (for
various ways of their change) is described in [8] and [9]. Herein we consider discrete motion for the
linear ramp speed profile, see Fig. 7.

For each stepper motor, next parameters must be known: maximum speed, maximum
acceleration, maximum start speed and number of steps per round1 (spr). In addition, at the beginning
of each motion the following parameters of motion are also known: desired position sMax][rad or
the total number of steps n , desired speed dv , acceleration a and deceleration d . The number of
the steps n (see labels in Fig.7.) is calculated as /n sMax α= , where 2 / [rad]sprα π= is an angle for
one step. In this paper we assume that all phases of motion are finished during n steps exactly. In
order to calculate remaining parameters of the speed profile, we use two different approaches which
are dependent on the following: (i) desired speed is reached before the start of deceleration
(trapezoidal speed profile, Fig. 7, solid line, rd vv <) and (ii) deceleration starts before desired
speed has been reached (triangular speed profile, Fig. 7, dashed line, rd vv ≥). As to which of these
speed profiles should be used, it is dependent on values an and adn , where an is the number of steps
that are needed to reach desired speed dv during acceleration and adn is the first step when the
deceleration phase starts. From the reached speed rv and during next ()adnn − steps, the speed
decreases from rv to the zero value. Now, the cases (i) and (ii) expressed with number of the steps an
and adn become: aad nn > and ada nn ≥ , respectively. In both cases the speed at the end of
acceleration must be the same as the speed at the start of deceleration (due to the continuity of
motion), which implies

() n
da

dnnndan adadad +
=⇒−= . (11)

On the other hand, to achieve the desired speed ,dv at= [0,]at T∈ in the acceleration phase,
movement αaa ns = is given as

()
a

v
nat

a
atn d

aa α
α

22
1

2
1 2

22 =⇒== . (12)

The number of steps dn when deceleration starts in case (i) is calculated from)(da nndan −=
which implies dannn ad /⋅−= , and in the case (ii) it is the same an , i.e. adad nnn == (see more
details in Arduino program).

1 these parameters will be specified by a motor manufacturer

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 55

IMPLEMENTATION OF THE ALGORITHM
Based on the consideration in the Sections II and III, the proposed algorithm is implemented by

using the microcontroller ATMega328.
As the hardware components we use: Arduino UNO unit, 28BYJ-48 stepper motor (power supply

5V-DC, 4096 spr, because the motor has 64 steps and a
gear unit with 64:1 ratio, 64*64=4096) and driver based
on the ULN 2003 circuit. A program that realized the
above algorithm is given in the appendix of the paper
and it is adjusted for Arduino platform of the Atmel
microcontroller. The desired data such as angle of
positioning, speed, acceleration and deceleration are
obtained from a program console using serial
communication. The equipment and devices for the
experiment are shown in Fig. 8.
CONCLUSIONS

According to the results of the experiment and
simulation, we can conclude that the algorithm which is
proposed by equations (5)-(10) satisfies the expected
results completely. The difference between linear speed and step speed, in comparison with the
algorithm in [4], is significantly smaller, so from this point of view the proposed algorithm is better,
but it is weaker in relation to the time of computing. Generally, we can conclude that the proposed
algorithm is better than the one in [4] for lower speed of stepper motors. Also, it is clear that this
speed limit depends on the applied hardware and software. In our case, for the Arduino platform and
devices that are shown in Fig.8., this speed limit is close to 5000 steps per second (5kHz).
Appendix - Arduino program
/* for simulation we use stepper motor, model 28BYJ-48, that has 64 steps per round. It includes a gear unit with 64:1 ratio, so
that for 1 rotation of the output shaft we need to generate 64*64=4096 steps */
const long f = 1000000; //frequency of the counter;
int Km = 64, reduktor = 64, K = Km*reduktor,kasni=66;
// dspeed [rad/s]-desired speed, acce [rad/s^2]-acceleration
// dece[rad/s^2]-deceleration, ugao[deg]-angle
float dspeed = 3, acce = 0.5, dece = 1.5, ugao = 0;
double alfa = TWO_PI/K, Co, Cm, Ci,Ra,Rd;
long imaK = 0,N = 0,nad = 0,na = 0, nd = 0, np = 0, broj = 0;
boolean smjer = true, acc = true, stoj = true;
//uni-polar motor – we use microstepping manner of stepping
byte cw[] = {0x01,0x03,0x02,0x06,0x04,0x0C,0x08,0x09};
byte duzcw = sizeof(cw), kk = 0, maska = 0xF0; //
char chh;
//
void setup(){
 Serial.begin(9600);
 Serial.println("Enter some of the following commands:");
 Serial.print("Uxxxx, - ");
 Serial.println("desired angle[deg]x10");
 Serial.print("Bxx, - ");
 Serial.println("desired speed [rad/s]x10");
 Serial.print("Axx, -");
 Serial.println("acceleration[rad/s^2]x10");
 Serial.print("Dxx, -");
 Serial.println("deceleration[rad/s^2]x10");
 Serial.print("S, - ");Serial.println("STOP");
 Serial.print("M,- ");Serial.println("MOVE");
 DDRB = 0x0F;//pins 8,9,10,11 of the Arduino are outputs
 PORTB &= 0xF0;//four low bits of PORTB are zero
}
//
void loop(){
 if (!stoj){ oneStep(smjer);
 delayMicroseconds(Ci - ((Ci == Cm) ? 4 : kasni));
 Ci = solveC();
 if (++np >= N) { np = 0; kk = 0; Ci = Co; stoj = true;
 Serial.print("Steps = ") ;Serial.print(imaK);
 Serial.print(", angle = ");Serial.println(imaK*360/K);
 }
 }
}

//one step in the desired direction, where ‘desno’ is direction
void oneStep(boolean desno){
 if (desno) {PORTB=(PORTB& maska) | cw[kk++]; imaK++;}
 else {PORTB=(PORTB & maska) | cw[duzcw-1-kk++];imaK--;} if (kk == duzcw) kk = 0;

Fig. 8. The experimental devices: Arduino,

driver and stepper motor

ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering

Tome XI (Year 2013). Fascicule 3. ISSN 1584 – 2673 56

}
//solve the time delay
double solveC(){ if (na == 0) return (Cm);
 if ((np<=na)||(np>=nd)){//acceleration and deceleration phase
 double q = 1+((np<=na)?Ra:Rd)*Ci*Ci; Ci = Ci/q;kasni=66;
 if (((np>= 1 && (np<= 5)) || ((N-np <= 5) && (N-np >= 1)))
 { Ci = Ci*(1+0.08/np) ; kasni=120;}//correction
 if (Ci < Cm) Ci = Cm; //using variable ‘kasni’ we take into
 } else Ci = Cm; return Ci; //account all delays occurred during
} /the call and execute of program
//this procedure calculate the parameters of the motion'
void init(float degU){
 Ra=acce/(alfa*f*f); Rd=-dece/(alfa*f*f); Cm=alfa*f/dspeed;
 N = (long) degU*K/360.0 - imaK; stoj = false;
 if (N == 0) {stoj = true; return; }
 if (N > 0) smjer = true;
 if (N < 0) {smjer = false; N = -N;}
 if (N == 1) oneStep(smjer);
 // trajectory planning
 if (acce != 0){// acceleration exists
 nad = (long)(N*dece)/(acce+dece);
 na = (long)(dspeed*dspeed)/(2*alfa*acce);
 if (nad > na) { nd = N - na * acce/dece; }//case (i)
 else { na = nad; nd = na; } //case (ii)
 Co = f * sqrt(2*alfa/acce); Ci = Co;//Co is initial time delay
 } else {//without acceleration
 na = 0; nd = N; Ci = Cm;
 }
 if (nd < na) { // this is might be due to rounding
 long np=na; na=nd;nd=np;//exchange the values of 'na' and 'nd'
 } np = 0;
}
//this function is called for every cycle in the loop procedure
void serialEvent(){ //command of the stepper motor
 if (Serial.available() > 0){
 char ch = toupper(Serial.read());
 if ((ch == 'S') || (ch == 'M')) chh = ch;
 if ((ch == 'U') || (ch == 'B') || (ch == 'A') || (ch == 'D')){
 chh = ch; broj = 0;
 }
//if ch is alphanumeric than calculate of the parameter value
 if (ch >= '0' && ch <= '9') broj = broj * 10 + (int)ch-'0';
 if (ch == ','){//comma is denoted end of command
 if (chh == 'U') {ugao = broj/10.0; init(ugao);}
 if (chh == 'B') dspeed = broj/10.0;
 if (chh == 'A') acce = broj/10.0;
 if (chh == 'D') dece = broj/10.0;
 if (chh == 'S') stoj = true; //STOP moving
 if (chh == 'M') stoj = false; //continuoe the moving
 broj = 0;
 }
}
REFERENCES
[1.] Industrial Circuits Application Note. “Stepper Motor Basics”, http://www.solarbotics.net/

library/pdflib/pdf/motor- bas.pdf
[2.] Reston Condit, Dr. Douglas W. Jones, “Stepping Motors Fundamentals”, Microchip AN907,

http://homepage.cs.uio- wa.edu/~jones /step/ an907a.pdf
[3.] Atmel Corporation, “AVR446: Linear speed control of stepper motor”, Application note,

http://fab.cba.mit.edu/classes/ MIT/961.09/prjects/i0/doc8017.pdf
[4.] David Austin, “Generate stepper motor speed profiles in real time”, Embedded Systems Programming,

January 2005, www.embedd ed.com/56800129
[5.] Aryeh Eiderman, “Real Time Stepper Motor Linear Ramping Just by Addition and Multipli-cation,”

http://hwml.com/ LeibRamp.pdf
[6.] Pramod Ranade, “Linear Motor Control Witdout the Math,“SPJ Embedded Technologies, April 2009,

https://www.eeti- mes.com/design/other/4026992/
[7.] http://picprog.strongedge.net/step_prof/step-profile.html
[8.] Paul Lambrechts, Matthijs Boerlage, Maarten Steinbuch, “Trajectory planning and feedforward design for

electromechanical motion systems,” Control Engineering Practice 13 (2005) 145-157, ScienceDirect
[9.] Mihajlo J. Stojčić, “Design electromechanical positioning system with controlled jerk”, Heavy Machinery -

HM 2011, pp. 13-17

