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ABSTRACT: There are lots of methods to issue mathematical models that can cover better or worse the 
real life phenomenon. Most of the mathematical models are using parameters that are rather 
estimated than real. Hence, a higher or a lower degree of accuracy can be expected. Since most of the 
input variables are estimated, low accuracy level is usually achieved. In this respect, the authors of 
this paper tried to offer an alternative model of a real-life mechanical amount simulation. This model 
starts over a larger amount of tests, where one could get a database, large enough to backup the 
further behavior of the system. In this respect, we have measured the pressure variation of the brake 
cylinders of a vehicle, as a function of the input pressure developed by the servomechanism of the 
system. Based on this large amount of data, we used a parametric mathematical model based on 
polynomial methods to estimate the generalized model. We can strongly confirm that the model is 
suitable - within a reasonable error margin - for all the braking systems of that specific kind of 
vehicles. 
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INTRODUCTION 

We’ve used a Romanian-made reconnaissance 
armored personnel carrier to perform the required 
tests (figure 1). These tests were part of a bigger 
program, aiming at updating the braking system of the 
vehicle. 

The braking system of the vehicle is a hydraulic 
one, assisted by an air-compressed section. So, the 
brake cylinders are acted by brake fluid. At its turn, 
the liquid is sent into the cylinders by a brake pump, 
pressed by the foot’s force and helped by compressed 
air (fig. 2).  The system is quite simple and already well 
known; hence no further details are needed. 

Also, the braking mechanism at each wheel’s level 
is a classic one, consisting of a pair of brake shoes, 
bolted on a brake plate, acting inside a brake drum and 
using a liquid-acted cylinder as a power actuator. 

The working principle of the servomechanism is 
quite simple (figure 2). When pressing the brake pedal 5 
its pushing rod acts on the piston of the master brake 
cylinder (a twin one, serving a dual circuit).  

The master twin cylinder sends the fluid into the 
brake cylinders that, at their turn, act the brake shoes. 
When pressing the brake pedal, the pedal’s lever pushes 
the connecting rod 9, which acts on a double chamber, 
unbalanced, compressed air distributor 13 (that mainly 
works as a “faucet” or a “tap”, opening and closing the 
way for the compressed air and also regulating the 
pressure).  

The regulated, compressed air is then sent through pipe 14 into the pneumatic chamber 1 (or 
item 8 in figure 3) that assists the master hydraulic pump (item 1, figure. 3), supplementing the force 
acting on its cylinder and helping the driver with the braking effort. 

 
Figure 1 - TABC-79, 4x4 Reconnaissance APC 

 
Figure 2 - Structure of the braking 

system’s control (cross-section) 
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Figure 3 - Hydro-pneumatic master cylinder 

(assisted brake pump) 
Figure 4 - Compressed air distributor 

MEASURED SIGNALS 
As we mentioned, the testing program was rather complex. But as far as this paper is 

concerned, the following amounts were needed: 
 the input air pressure on the brake distributor; 
 the output air pressure on the brake distributor; 
 the input liquid pressure on the brake cylinders of both wheels of the real axle (the braking 

pressure). 
THE PRINCIPLE OF THE MODEL 

We are now looking for a mathematical model based on the measured signals that describes the 
braking pressure evolution at the wheel’s level as a function of the input air pressure on the brake 
distributor. As can be seen, the process involves two stages. 

First, determining a transfer function for the brake distributor and getting a mathematical 
model to describe the time history of the output air pressure as a function of the input air pressure. 

Second, determining a transfer function for the rest of the braking system and getting a 
mathematical model to describe the time history of the liquid braking pressure as a function of the 
distributor’s output pressure. It is quite easy to notice that the transfer function of the liquid section 
can be a first order one (within reasonable margins of error), since the liquid can be considered 
uncompressible. On the other hand, for the pneumatic section, previous analysis gave us a third order 
transfer function to describe the phenomena. Nevertheless, it is quite useless to have a too high 
degree of accuracy while pushing too much the computational means; hence, a second order transfer 
function is just perfect for our needs.  
PARAMETRIC MODELS. IDENTIFICATION PROCEDURE 

In the most cases, when describing a dynamic process, parametric models are used having 
vectors as arguments. If the vector is θ  then its model will be known as ( )θM . This approach suggests 
that, when the vector θ  takes a set of possible values, a set of models is obtained and its structure 
will beM . 

Therefore, if the mathematical model of the process is “parameterized “ by the vector θ , the 
problem of the identification resides in determining or assessing the model’s parameters on the basis 
of the experimental data of the input and output variables of the system. Usually, the procedure uses 
only half of the whole amount of data, the other half being used to confirm the elaborated model. 
The mostly used checking method is the “predicted value method “. The minimized objective function 

is given by ( )∑
=

=
N

t

tef
1

2arg , where ( )te  is the error. 

There are a lot of parametric models. Considering the characteristic features of our mechanical 
system and taking into account the above mentioned reasons, we decided to use a SISO (Single Input 
Single Output) model; its general form is given by: 

 ( ) ( ) ( )
( ) ( ) ( )

( ) ( )te
qD
qC

nktx
qF
qB

tyqA +−=  (1) 

where ( )ty  is the system’s output, ( )tx  is the system’s input, ( )te  is the noise (that can be interpreted 
as an error) and t  is the independent variable (actually the time, usually given in discrete domain). 
Eventually, nk is the number of the delaying elements along the system’s input-output chain.  

The polynomials featuring the SISO model are given by: 
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where q  is known as the delay operator and is given like: ( ) ( )itxtxq i −=− , while na, nb, nc, nd and nf 
are the polynomials’ orders. 
SPECIFIC FEATURES OF THE USED MODEL 

The mathematical model in (1) is the general one. It can be customized, according to the 
operator’s needs. As we’ve already mentioned, the demands for a model should take into account not 
a too high level of accuracy, an error level lower than 3% being more than enough for our needs. In 
this respect, the particular ARX (Auto-Regressive with eXogene inputs) model was used. 

This particular model is featured by the following conditions: 

 ( ) ( ) ( )⎩
⎨
⎧

===
===

1
0
qFqDqC

nfndnc
 (3) 

that turns equation (1) into the particular one: 
 ( ) ( ) ( ) ( ) ( )tenktxqBtyqA +−=  (4) 

We consider necessary to mention that we used a lot of other models. Their accuracy had 
usually been higher than the one’s we mentioned but the computing resources had been too high to 
keep them as suitable. 

Considering the previously mentioned issues, we could use two different models (a first order 
model for the hydraulic section and a second order one for the pneumatic section) then combine 
them. As we actually did first time, and the results can be seen in the next sections of the paper. 

We noticed that is more complicated to act that way since the signals we obtained and used 
were very smooth, with no needs for intense filtration. Moreover, the hydraulic section is acting 
rather “predictable” with no problems in its evolution. So we made the decision to issue a single 
model, a second order one, delivering the time history of the hydraulic pressure of the brake cylinder 
as a function of the input air pressure on the air distributor. 
ACHIEVED DATA. MODELS 

Figure 4 depicts a sample of the measured data. Hundreds of tests were developed and the data 
were stored and preprocessed (that means sorting, filtering, smoothening and discharging the 
unsuitable ones). As can be seen, we measured the force on the brake pedal, but it is unusable from 
the modeling point of view, due to the fact that the driver can press completely random the pedal 
from test to test. It was however useful to have this signal, since it provides the starting and ending 
points of the braking process. 

Figures 5 and 6 provide two samples of the partial mathematical models based on the SISO 
structure and using ARX algorithm. For one (but the same test), figure 5 gives the time history of the 
distributor output pressure as a function of its input pressure. Figure 6 depicts in the same time and 
for the same test the time history of the pressure within the left wheel’s brake cylinder as a function 
of the distributor’s output pressure. 

The mathematical model of the time history of the distributor’s output pressure as a function 
of its input pressure (depicted in fig. 5) is given by: 

 x
dt
dxy

dt
dy

dt
yd 44
2

2

10163,853,9510768,65,230 ⋅+=⋅++  (5) 

In the equation above ( )ty  is the distributor’s output pressure and ( )tx  is the distributor’s input 
pressure. 

In the same time, the mathematical model of the time history of the brake cylinder’s pressure 
as a function of the distributor’s output pressure (depicted in fig. 6) is given by: 

 xy
dt
dy 8,40643,32 =+                     (6) 

In the equation above ( )ty  is the brake cylinder’s pressure and ( )tx  is the distributor’s output 
pressure. Should be mentioned that different models have been issued for left and right brake 
cylinders. 
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Figure 4 - Test sample. Measured parameters: P-LW: pressure on the left wheel’s brake cylinder;  

P-RW: pressure on the right wheel’s brake cylinder; Fp: force on the brake pedal; PI-D: input pressure 
on the distributor; PO-D: output pressure on the distributor 

 
Figure 5 - Characteristic features of the mathematical model, and the time history of the distributor’s 

output pressure as a function of the distributor’s input pressure - ARX algorithm 
These two models can be lately combined and get a final one. At this stage of our research, we 

found to be useful to having a global model of the whole braking system instead of modeling every of 
its sections apart. But it’s much more difficult to compose these two models and get a final one than 
to create from the very beginning a global model. And we still have to keep in mind that this kind of 
work should be developed for every single test then average the results to get the generalized model. 

Instead of acting that way, we chose to use a global model and find (of course, for every single 
test) the time history of the brake cylinder’s pressure as a function of the distributor’s input 
pressure. The result, for one of the tests, is depicted in figure 7. As can be noticed, a second order 
transfer function was used. For the chosen test, the mathematical model is given by: 

 x
dt
dxy

dt
dy

dt
yd 2660300,50280,192770,332

2

+=++  (7) 
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In the equation above ( )ty  is the brake cylinder’s pressure and ( )tx  is the distributor’s input 
pressure. Should also be mentioned that different models have been issued for left and right brake 
cylinders. As a result, every test of the whole set of tests had two mathematical models of this kind: 
one for the right wheel’s slave cylinder pressure and another for the right wheel’s cylinder. 

 
Figure 6 - Characteristic features of the mathematical model, and the time history of the brake 

cylinder’s pressure as a function of the distributor’s output pressure - ARX algorithm 

 
Figure 7 - Characteristic features of the mathematical model, and the time history of the brake 

cylinder’s pressure as a function of the distributor’s input pressure (global model) - ARX algorithm 
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To obtain the global model, each particular model’s polynomial coefficients had been set in a 
table according to their rank. Since the differences between the pressure value and their evolutions in 
each left and right cylinders weren’t significant, we considered that they could be put together in the 
same table (a sample is given below). Eventually, the values were averaged and they were used to 
write the final, global, generalized model (8). 

Table 1. Averaging the polynomial coefficients (sample) 

Test Brake 
cylinder 2

2

dt
yd

 
dt
dy

 y  
dt
dx

 x  
Normalized 
modeling 
error [%] 

............ ...... ........ ......... .......... ........... ........ .......... 
left 1,000 19,640 127,000 37,830 1760 0,001 P1_2r_pam 
right 1,000 52,470 376,500 83,630 5216 0,002 
left 1,000 23,970 163,300 46,740 2253 0,011 P3_2r_pas 

right 1,000 28,900 185,200 50,510 2546 0,020 
............ ...... ........ ......... .......... ........... ........ .......... 

Average 1,000 30,970 206,483 50,851 2850 0,013 
 

x
dt
dxy

dt
dy

dt
yd 2850851,50483,206970,302

2

+=++                                    (8) 

To prove the accuracy of the generalized, global model we drew the red curve superimposed 
over the whole set of tests’ curves, as can be seen in figure 8. The average absolute error is lower 
than the previously considered 3% limit. 

 
Figure 8 - Generalized, global model of the time history of the brake cylinder’s pressure as a function 

of the distributor’s input pressure 
CONCLUSIONS 

Starting from the test data sets, excellent mathematical models can be obtained when using 
powerful modeling tools. If only the behavior of some system is need and no further analysis is 
needed, than this can be the best, the most accurate and the fastest method. The obtained model can 
be easily used for larger lots of similar products. As a matter of fact, we have proved that the model 
given by (8) is suitable for another vehicle of the same type and, after confirming it, the error was 
also less than 3%. 
This method can be also used in diagnosing a system, not necessarily the braking system. After 
averaging the values of a properly working system of several vehicles, for instance, the generalized 
model can be compared to a malfunctioning one. Our research took further steps and we can even 
determine “what goes wrong” in a malfunctioning braking system. Of course, we can’t find any type 
of faulty part, but at least we can refine the search at the subsystems’ level. 
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