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ABSTRACT: This paper presents recent developments in using the CVBEM method for the study of the 
incompressible fluid's non-stationary motion through a network of profile grids, where the fluid's non-
stationary motion is caused by small vibrations of the blades. Based on the theory of linearizability, 
the non-stationary motion is decomposed into a basic stationary motion and a non-stationary motion 
resulting from the vibrations of the blades with small amplitudes. Using the fundamental integral 
equation of the non-stationary motions's complex conjugate velocity, we establish the following two 
transfer kernels: ( )ζ,zG  describing stationary effects and ( )ζ,zH  describing non-stationary effects. 
We argue that the integral equation can be solved using the indirect BEM method of the non-
stationary motion. 
KEYWORDS: Incompressible fluid, non-stationary motion, profile grids, complex velocity, theory of 
linearizability, boundary element method 
 
INTRODUCTION 

The fluid's motion through turbomachines is in general non-stationary due to the vibration of 
hydraulic machinery blades or to the influence of the fluid viscosity. Indeed, the workflow in a 
turbomachine can be regarded stationary only in the sense that it is repeated cyclically over a full 
rotation of the rotor. However, according to [10], even this basic cycle is disrupted by various non-
stationary phenomena for the following reasons. (a) The network layer is formed by a contour whose 
radius varies along the flow. These variations lead to essential irregularities in velocity and pressure. 
(b) Further, as the stream's structure is determined also by the viscosity, the boundary layer at 
infinity yields irregularities in the velocity around the network profiles. (c) Finally, the non-
stationary components of the uid's motion are caused also by the oscillations (vibrations) of the 
network profiles. 

The perturbations introduced by these factors are manifested by the existence of vortices in 
the network profiles. These perturbations are practically transmitted in the profile traces and are 
preserved only on finite distances, after which they are amortized. Even though the attenuation of 
the vortex intensity is asymptotic, from the mathematical point of view it is safe to consider that the 
layers of free vortices resulting from high intensity profiles are of finite length - see e.g. [3], [4], [9], 
[10], [11], [7]. 

Following this observation, in this paper we study the incompressible fluid's non-stationary 
motion through a network of profile grids, where the fluid's non-stationary motion is caused by small 
vibrations of the blades. For doing so, we use the theory of linearizability in conjunction with the 
boundary element method (BEM), as follows. Based on the theory of linearizability, we split the fluid's 
non-stationary motion in two parts: a basic stationary motion (Section 3) and a non-stationary motion 
resulting from the vibrations of the blades with small amplitudes (Section 4). Based on [3, 4], we 
establish the fundamental integral equation of the non-stationary motion's velocity and apply the BEM 
method to solve the non-stationary part of the fluid's motion (Section 5). To this end, we analyze the 
free vortices around the network profiles and consider the fluid's motion through the network profiles 
variable over time. 
PRELIMINARIES 

We consider the motion of an ideal and incompressible uid through an infinite network of 

profiles in the complex plane iyxz += , with periodicity 2
i

te
π

=ω . We assume a constant average 

stream at infinity upstream and downstream, and denote respectively by ∞1V and ∞2V  the upstream 
and downstream velocities. Further, the oscillations (vibrations) of network profiles are considered to 
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be synchronous harmonic, with a frequency f and a phase angle α  from profile to profile. The 
vibrations' amplitude is assumed to be small. Finally, we consider a planar motion relative to the xOy 
Cartesian coordinate system, where the Ox axis is oriented in the flow direction such that it is 
perpendicular to the network's director lane. 

Definition 2.1 The complex coordinates kz  are called the congruent points of the network 
profiles if they satisfy the following condition: 

( ) ( ) ,ezfiktzz kfj
0k

α−τα++=    ,...,2,1,0k ±±=     (1) 
where τ  denotes the time, t is the network's step, k is the number of network profiles, a is the 
vibrations' amplitude, the function ( ) ( ) ( )y,xify,xfzf yx += defines the shape of vibrations, and j 

denotes the imaginary unit linked to the time periodicity of processes that do not interact with the 
imaginary unit i. 

Using the theory of linearizability, we conclude that the non-stationary motion through profile 
grids can be studied as the composition of a basic stationary motion 
and a non-stationary motion of perturbations. We thus have: 

( ) ( ) ( )zwzwzV 0 += ;      (2) 

where ( )zV  denotes the non-stationary motion's complex conjugate velocity, ( )zw 0  is the stationary 
motion's complex conjugate velocity, and ( )zw  is the complex conjugate velocity of the non-
stationary motion of perturbations. Using Eq. (2), in order to determine the non-stationary motion's 
complex conjugate velocity ( )zV , we thus need to establish and solve the integral equations of ( )zw 0  
(see Section 3) and ( )zw  (see Section 4). To this end, we make the following considerations. 

Proposition 2.2 The complex conjugate velocity ( )zw  of the non-stationary motion of 
perturbations satisfies the following conditions: 

 ( )zw  is periodic w.r.t. the time τ  and step t of the network, and we thus have: 

( ) ( ) ( ) ,ezw,iktzw kfj α−τ=τ+    ,...,2,1,0k ±±=    (3) 
 ( )0zw →  when ±∞→x , that is, the non-stationary motion of perturbations disappears at 

infinity, before and after the network. 
Due to the non-stationary nature of the fluid's motion, the circulation around each profile 

depends on time. However, this time dependency contradicts Thompson's theorem according to which 
the circulation along a closed curve (e.g. along the base profile 0L ) is constant if the acceleration 
potential is uniform - see [3], [10]. For this reason, it is necessary to assume the existence of velocity 
discontinuities after each profile - see Fig. 1. These discontinuities are in fact free vortex layers 
which continually emerge from the top of each profile. Moreover, under the assumption that the 
fluid is incompressible and continuous, these discontinuities modify only the tangential components 

τw of the ( )zw  velocity, and the normal components nw  of the non-stationary motion of 
perturbations remain continuous. Similarly, the pressure fields are continuous and we conclude the 
following property. 

Proposition 2.3 The intensity ( )τη ,xk  of free vortex layers is defined as  
( ) ( ) ( ) ,w2ww kkk

k τττ
=−=η −+    ( ) ( ) ( )kkk www τττ

=−= ++       (4) 

where ( ) ,w k
+τ

 ( )kw −τ
 respectively denote the tangential velocities of the discontinuities along the profile 

kL . 
When compared to the overall velocity, the non-stationary motion occurs with relatively low 

velocities. We thus assume that the asymptotic downstream velocity of vortex layers is 2i
2 eV β−
∞ - see 

Fig. 1(b). Using [10], we also assume that the vortex traces are rectilinear, with high intensity and of 
finite length. 

Proposition 2.4 [3], [10] The intensity ( )τη ,xk  of free vortices is determined by the bound 
vortices ( )τγ ,xk , that is by the circulation around the profiles, as follows: 

( )
+τ=τ∞

τ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ
Γ

−==τη
d

d
V

1w2,x k

2
k        (5) 

where 
22

0

cosV
xx
β

−
=τ−τ

∞
+  and τ−⋅Γ=Γ if

k0k e  denotes the circulation's stationary part around kL . 

Using Proposition 2.4, in Section 4 we will build a single integral equation for computing the 
velocity of the non-stationary motion of perturbations. We also show that the derived integral 
equation yields both necessary and sufficient conditions in the study of fluid's motion. When compared 
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to the work of [9], our approach brings an important benefit for the following reason. Instead of one 
equation, in [9] two integral equations are computed and studied: one Voltera equation to derive the 
vortex intensity and one equation to compute the induced velocity of perturbations. 
INTEGRAL EQUATION OF THE STATIONARY MOTION'S VELOCITY 

In [6] we showed that the hydrodynamics of network profiles admits precisely four boundary 
problems, as listed below. 

 Problem 1 (P1): The motion of an incompressible fluid through profile grids, where the complex 
potential is a holomorphic function and the domain is infinite-connex; 

 Problem 2 (P2): The motion of a compressible fluid through an isolated profile, where the 
complex potential is not a holomorphic function and the domain is simple-connex; 

 Problem 3 (P3): The motion of a compressible fluid through profile grids, where the complex 
potential is not a holomorphic function and the domain is infinite-connex; 

 Problem 4 (P4): The motion of a compressible fluid through profile grids on an axial-symmetric 
flow-surface, in variable thickness of stratum, where the complex potential is not a holomorphic 
function and the domain is infinite-connex. 

The above listed problems can be solved using BEM - see [6]. Moreover, solving problem P4 
yields also solutions for problems P1, P2, and P3. That is, by appropriately adjusting the fluid's 
density ρ  and stratum thickness h, problems P1, P2, and P3 become special cases of P4. 

For computing the stationary motion's velocity ( )zw 0  in Eq. (2), in this paper we are interested 
in solving P1. As argued in [6], when both ρ  and h are constant, then P4 becomes P1. Using the theory 
of p-analytic functions from [8] and the Cauchy integral equation of p-analytic functions, the integral 
equation of the complex conjugate velocity ( )zw 0  is derived in [4], [5] as given below: 

( ) ( ) ( ) ζζζ+= ∫ dw,zGVzw
0L

m0 ,   ( ) ( )ζ−π
π

=ζ z
t

ctg
i2

1,zG     (6) 

where 
2

VV
V 21

m
∞∞ +

=  is the asymptotic mean velocity and ( )ζ,zG  defines the kernel of the 

stationary motion. Let ( )sγ  denote the intensity of bound vortices and ( )sq  the intensity of profile 
sources. Using the hydrodynamic relation ( ) ( ) ( )( )dssiqsdw +γ=ζζ , from Eq. (6) we get: 

( ) ( ) ( ) ( )( )dssiqs,zGVzw
0L

m0 +γζ+= ∫       (7) 

and conclude the following theorem. 
Theorem 3.1 In the case of the incompressible fluid's stationary motion, the stationary complex 

velocity ( )zw 0  in point −∈Dz  results from the composition of the following two complex velocities: 

 the stationary velocity of the asymptotic motion, determined by mV ; 
 the stationary velocity resulting from the sources ( ) ( )siqs +γ  along the profile 0L . 

We note that Theorem 3.1 allows one to solve problem P1 by using the BEM method. To this 
end, in [5] a calculus algorithm for deriving the fluid's stationary velocity was given.  
INTEGRAL EQUATION OF THE NON-STATIONARY MOTION'S VELOCITY 

Let kC ; Zk∈  denote the closed curves 
around the profiles and their free vortex 
layers. In what follows, kL , Zk∈  denote 

the profile contours, ∗
kL  the free vortex 

lines, and +
kD  and +

kD  the internal and, 
respectively, the external domain of the 
profiles kL  situated in a periodical strip 
with width t - see Fig. 1(a). Due to the 
periodic nature of the fluid's motion, it is 
sufficient to study the fluid's motion in the 
external domain 0D  of the principal 
periodical strip containing the base profile 

0L  -see Fig. 1(b). 
We make the following observations 

over Fig. 1(a). The contour C, enclosing the 
field point −∈Dz , is composed by slices and 

 
Figure 1: (a) Velocity discontinuities on profiles. (b) 

Velocity discontinuities on 0L . 
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we have: ∑
∞

−∞=
∞ −=

k
kCLC  Using the Cauchy integral equation for multiple-connex domains, the 

following equation then defines the perturbation's complex velocity w(z): 

( ) ( ) ( )
∫∫ ∑ −ζ

ζζ
π

−
−ζ

ζζ
π

=
∞

∞

−∞= kC k

kk

L k z
dw

i2
1

z
dw

i2
1zw       (8) 

By Proposition 2.2, we have ( ) 0zw →  when ±∞→x . That is, the complex velocity of the 
perturbations' non-stationary motion disappears at infinity, before and after the network. Based on 
Liouville's theorem, we conclude that the integral entity over ∞L  in Eq. (8) becomes constant, and 
thus zero. We further note the motion's periodicity w.r.t. the network's step t. From Proposition 2.2, 
we have ( ) ( ) α−ζ=+ζ jkewiktw . Based on these observations, Eq. (8) becomes as follows:  

( ) ( ) ( ) ζζ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−ζ−
+

+ζ−
+

ζ−π
=ζ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−ζ−
ζ

π
= ∫ ∑∫ ∑

∞

=

α−α∞

∞=

α−

dw
iktz

e
iktz

e
z

1
i2

1d
iktz

ew
i2

1zw
00 C 1k

jkjk

C k

jk
  (9) 

From the Euler relations, we have α±α=α± ksinjkcose jk . Using the series representation of the 

cotangent function, we obtain ∑
∞

=

⎟
⎠
⎞

⎜
⎝
⎛

π+
+

π−
=

1m kz
1

mz
1

2
1ctgz  and icthizctgz =  According to [10], Eq. (9) 

then becomes: 
( )( )

( )

( )( )

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ζ−π

ζ−α−π

−
ζ−π

ζ−α−π
π

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−ζ−
+

+ζ−
+

ζ− ∑
∞

=

α−α

t
zsh

t
zsh

ij

t
zsh

t
zch

tiktz
e

iktz
e

z
1

1k

jkjk
        (10) 

By using Eq. (10) in conjunction with the curvilinear integral properties on ∗∪= 000 LLC  and 
applying the indirect BEM method to the integral equation Eq. (9) of the perturbation's complex 
velocity, we derive the following relation: 

 ( ) ( ) ( ) ( ) ( ) ζζαζ+ζζαζ= ∫∫ dwzHdwzHzw
xLL 00

,,,,     (11) 

where ( )
( )( )

( )

( )( )

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ζ−π

ζ−α−π

−
ζ−π

ζ−α−π

=αζ

t
zsh

t
zsh

ij

t
zsh

t
zch

ti
zH

2
1,, . Consider now a point 0L∈ζ  The 

perturbation's complex velocity in ζ  is then: 

( ) ( ) ( )ζ+ζ=ζ 0vvw           (12) 

where ( )ζv  is the perturbation's velocity on the contour, that is the perturbation's relative velocity; 
and ( )zv0  is the velocity resulting from the profile oscillations, that is the perturbation's transfer 
velocity. By replacing Eq. (7), Eq. (11) and Eq. (12) in Eq. (2), the fundamental integral equation 
corresponding to the complex velocity ( )zV  of fluid's non-stationary motion is given below: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ζζαζ+ζ+ηαζ+

+ζ+γαζ+ζ+γζ+=

∫ ∫

∫∫

dvzHdssiqszH

dssiqszHdssiqszGVzV

xL L

LL
m

0 0

00

0,,,,                 

,,,
             (13) 

where ( ) ( )siqs +γ  represents the bound sources intensity on 0L , and ( ) ( )siqs +η  the sources intensity 

on the discontinuity lane ∗
0L . Following Eq. (13), we derive the following theorem. 

Theorem 4.1 In the case of the incompressible fluid's non-stationary motion, the fluid's 
complex velocity ( )zV  in point −∈Dz results from the composition of the following five complex 
velocities: 

 the stationary velocity of the asymptotic motion, determined by mV ; 
 the stationary velocity resulting from the sources ( ) ( )siqs +γ  along 0L ; 
 the perturbation velocity resulting from the sources ( ) ( )siqs +γ  along 0L ; 

 the perturbation velocity resulting from the sources ( ) ( )siqs +η  along the discontinuity lane ∗
0L  of 

the free vortices ( )sη ; 
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 the transfer velocity resulting from the oscillations of 0L , determined by the velocity ( )ζ0v . 
From Theorem 4.1, we conclude that the fluid's non-stationary motion is determined by the 

following two kernels: ( )ζ,zG  defining the transfer kernel of stationary effects, and ( )αζ,,zH  
characterizing the transfer kernel of the perturbations. 
SOLVING THE INTEGRAL EQUATION OF THE PERTURBATION'S COMPLEX VELOCITY 

Following the results of Section 4, we now discuss considerations on solving the integral 
equation of the perturbation's complex velocity ( )zw . 

We start with the following observation. Under the assumption that the profile vibrations are 
rectilinear harmonic vibrations along the Oy axis, we have the following identity: 

( ) ( ) 0
0

βτ ijf eeyjfzv −⋅⋅=       (14) 

where 0β  is the angle formed by the vector 0v
r

 with the Ox axis.  
In order to satisfy the boundary conditions of Eq. (10) from the CVBEM method, we consider Eq. 

(11) on the boundary, that is on ( )∗∪∈→ 000 LLzz . To this end, we make use of the Plemelj formulas 
in the first integral of the right-hand side of Eq. (11), that is the following identity is applied: 

( ) ( ) ( ) ( ) ( )0
'

000
2
1,,,,lim zwdwzHdwzH

LLzz
∫ −ζζαζ=ζζ∫ αζ

→
             (15) 

where the primed integral notation ∫
'

L0

denotes the fact that the integral expression is calculated 

w.r.t. the direction of the principal values. 
Based on the results of [3], we then conclude the property given below. 

Proposition 5.1 In the points ∗∈ 0Lζ , the complex velocity ( )swn  satisfies the following 
relation:  

( ) ( ) 0dw,,zH
x
0L

n =ζζαζ∫           (16) 

Using Eq. (12) and Eq. (15) in conjunction with Proposition 5.1 for ( )00 Lzz ∈→ , the integral 
equation Eq. (11) can be written in the following form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ −ζζαζ+ζζαζ+ζζαζ=
'

L
0000

'

L L

000

00
x
0

zvdv,,zH2dw,,zH2dv,,zH2zv             (17) 

where ( )ζw  can be expressed as a function of the circulation around the base profile 0L , that is as a 
function of ( )ζv , using Eq. (5). 

As a result, the integral equation Eq. (17) contains only one unknown function, that is ( )ζv . The 
values of ( )ζv  can be computed by applying the discretization procedure of the CVBEM method. By 

using the values of ( )ζv  for each ∗∪∈ζ 00 LL , the complex velocity ( )zV  of the fluid's non-stationary 

motion can further be derived from Eq. (13) in every point z −∈ 0Dz . 
We finally make the following observation. Let us assume that the profile vibrations are 

rectilinear harmonic vibrations along the Oy axis as given in Eq. (14). Further, instead of the CVBEM 
method, let us apply the BEM method with real values. Under these assumptions, following the results 
of [11], the real part of the integral equation Eq. (17) can be split and a second-order Fredholme 
integral equation is derived for ( )θV , with [ ]π∈θ 2,0 .  
CONCLUSIONS 

Using the theory of linearizability, we showed that the fluid's non-stationary motion through a 
network of profile grids is determined by a basic stationary motion and a non-stationary perturbation 
motion resulting from the vibrations of the blades and the fluid's viscosity. Using the BEM method, the 
fundamental integral equation of the fluid's non-stationary motion was derived and solved. We argued 
that the fluid's motion is characterized by the transfer kernel ( )ζ,zG  of stationary effects in 

conjunction with the transfer kernel ( )αζ,,zH  of perturbations. 
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