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ABSTRACT: The objective of the present paper is study the generalized thermoelastic diffusive waves in 
heat conducting solids. The governing equations for heat conducting generalized thermodiffusion 
materials are solved symbolically. It is shown that the characteristic equation, three waves namely, 
elasto-diffusive (ED), mass-diffusion (MD-mode) and thermo-diffusive (TD-mode), can propagate in 
such solids in addition to transverse waves. The transverse waves remain unaffected due to 
temperature change and mass diffusion effects and get decoupled from rest of the fields and travel 
without attenuation and dispersion. It is also shown that how easily one can study that the 
generalized thermoelastic diffusive waves are significantly affected by the interacting parameters 
using this computational technique. Finally, the results are discussed graphically. 
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INTRODUCTION 

Thermodiffusion in elastic solids is due to coupling of the temperature, mass diffusion and of 
strain and heat and mass exchange with the environment during this process. These days, oil 
companies are interested in the process of thermodiffusion for more efficient extraction of oil from 
oil deposits. Diffusion can be defined as the random walk of an ensemble of particles from regions of 
high concentration to regions of lower concentration. In most of the applications, the concentration is 
calculated using what is known as Fick’s law. This is a simple law that does not take into consideration 
the mutual interaction between the introduced substance and the medium into which it is introduced 
or the effect of the temperature on this interaction.  

In the recent years increasing attention is directed towards the generalized theory of 
thermoelasticity, which was found to give more realistic results than the coupled or uncoupled 
theories of thermoelasticity, especially when short time effects or step temperature gradients are 
considered. The theory of generalized thermoelasticity with one relaxation time was first introduced 
by Lord and Shulman [5], who obtained a wave-type heat equation by postulating a new law of heat 
conduction instead of the classical Fourier's law. A review of various representative theories in the 
range of generalized thermoelasticity has been presented Chanderashekhariah [3].  Nowacki [8] 
developed the theory of thermoelastic diffusion by using a coupled thermoelasticity. Dudziak and 
Kowalski [4] and Olesiak and Yryev [7], respectively, discussed the theory of thermodiffusion and 
coupled quasi-stationary problems of thermal diffusion in an elastic layer. Verma [13-15] and Verma 
Hasbe [16-17] studied problems in generalized thermoelasticity with thermal relaxation.  Many 
authors [1,2, 6, 7, 9-12] considered problems in the theory of generalized thermoelastic diffusion. In 
this article the generalized thermoelastic diffusive waves in heat conducting solids is study using the 
symbolic processing. The governing equations for heat conducting generalized thermodiffusion 
materials are solved symbolically. It is shown that the characteristic equation, three waves namely, 
elasto-diffusive (ED), mass-diffusion (MD-mode) and thermo-diffusive (TD-mode), can propagate in 
such solids in addition to transverse waves. It is shown that transverse waves get decoupled from rest 
of the fields and travel without attenuation and dispersion stay unaffected with temperature change 
and mass diffusion. It is also exhibited that how easily one can study that the generalized 
thermoelastic diffusive waves are significantly affected by the interacting parameters using this 
computational technique. Finally, the results are discussed graphically. 
GOVERNING EQUATIONS AND SOLUTION 

The governing equations for an isotropic, homogeneous elastic solid with generalized 
thermoelastic diffusion at constant temperature T0 in the absence of body forces given by Sherief et 
al. [6] are:  

The equation of motion:  

, , 1 , 2 ,( ) Ci jj j ij i i iu u T uμ λ μ β β ρ+ + − − = &&
                (1)

 

The equation of heat conduction:  
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0 1 0 0 0 0 ,( ) ( ) ( )E iic T T T e e aT C C KTρ τ β τ τ+ + + + + =& &&& && &&& &&
                                (2)

 

The equation of mass diffusion:  

2 , , 0 ,ii ii iiD e DaT C C DbC oβ τ+ + + − =& &&
    (3)

 

The constitutive equations: 
1 2

0 1 0 0

2

2 ( ) ,

,
,

i j i j i j k k

E k k

k k

e e T C

T S c T T e a T C
P e b C a T

σ μ δ λ β β

ρ ρ β
β

= + − −

= + +
= − + −

               (4)
 

where material constants and are given by  

1 (3 2 ) tβ λ μ α= +  and 2 (3 2 ) cβ λ μ α= +
            (5) 

tα  coefficient of linear thermal expansion, cα  coefficient of linear diffusion expansion, ,λ μ  are 
Lame’s constants, T0 is the temperature of the medium in its natural state assumed to be such that 

0T T− , T  is the absolute temperature, ijσ  are the components of the stress tensor, iu  are the 

components of the displacement vector, ρ  is the density assumed independent of time, ije  are the 

components of the strain tensor, S  is the entropy per unit mass, P  is the chemical potential per unit 

mass, C  is the mass concentration, Ec  is the specific heat at constant strain, K  is the coefficient of 

thermal conductivity, D  is thermodiffusion constant. 0τ is the thermal relaxation which will ensure 

that the heat conduction equation, satisfied by the temperature T  will predict infinite speeds of 
heat propagation. τ  is the diffusion relaxation time, which will ensure that the equation, satisfied by 
the concentration C  will also predict finite speeds of propagation of matter from one medium to the 
other. The constants ‘a’ and ‘b’ are the measures of thermodiffusion effects and diffusive effects, 
respectively. The superposed dots (.) denotes derivative with respect to time and comma (,) denotes 
the spatial derivative. 

For two-dimensional motion in x-z plane, the eq. (1)-(3) is written as 

1,11 3,13 1,33 1 ,1 2 ,1 1( 2 ) ( ) Cu u u T uλ μ λ μ μ β β ρ+ + + + − − = &&
         (6)

 

3,11 3,33 1,13 1 ,3 2 ,3 3( 2 ) ( ) Cu u u T uμ λ μ λ μ β β ρ+ + + + − − = &&
       (7)

 

( ),11 ,33 1 0 0E m mK c T e aT Cρ β τ τΘ +Θ = Θ+ + && &
    (8)

 

( ) ( ) ( )2 ,11 ,33 ,11 ,33 ,11 ,33 0nD e e Da Db C C Cβ τ+ + Θ +Θ − + + =&
             (9)

 

where 0m i
t

τ τ ∂
= +

∂
 , 3n i u

t
τ τ ∂

= +
∂

. 

The displacement components 1u  and 3u  may be written in terms of potential functions φ and ψ as 

1u x z
φ ψ∂ ∂

= −
∂ ∂

,   3u z x
φ ψ∂ ∂

= +
∂ ∂     (10)

 

Using (10) into equations (6)-(9), we obtain 
2μ ψ ρψ∇ = &&

      (11)
 

2
1 2( 2 ) CTλ μ φ β β ρφ+ ∇ − − = &&

    (12)
 

( ) 2
,11 ,33 1 0 0E m mK c T aT C

t
ρ β τ φ τ∂

Θ +Θ = Θ+ ∇ +
∂

&&
   (13) 

( ) 2
,11 ,33 1 0 0E m mK c T aT C

t
ρ β τ φ τ∂

Θ +Θ = Θ+ ∇ +
∂

&&

 

2 2
1 0 0E m mK c T aT C

t
ρ β τ φ τ∂

∇ Θ = Θ+ ∇ +
∂

&&  

     
( ) ( )2

2 ,11 ,33 ,11 ,33 0nD Da Db C C Cβ φ τ∇ + Θ + Θ − + + =&
  (14) 

2 2 2
2 0nD Da Db C Cβ φ τ∇ + ∇ Θ− ∇ + =&

 
Equation (11) is decoupled, whereas the equations (12)-(14) are coupled inφ , Θ  and C . From 

equations (12)-(14), we see that three longitudinal waves namely, elastodiffusive (ED), mass diffusion 
(MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse 
waves and are affected due to the presence of thermal and mass diffusion waves, while the transverse 
waves unaffected  
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And get decoupled from rest of the fields and hence remain unaffected due to temperature 
change and mass diffusion effects. The solution of equation (11) corresponds to the propagation of 

transverse wave with velocity
4v

μ
ρ= . 

ANALYSIS 
Solutions of the equations (12)-(14) are now sought in the form of the harmonic traveling wave 

( ) ( ) ( )1 2, , , , ik xd zd vtC P Q R eφ + −Θ =                              (15) 
in which v is the phase speed, k is the wave number, ( 1 2,d d ) denotes the projection of the  wave 

normal onto the x z−  plane. The homogeneous system of equations in ,P Q andR , obtained by 
inserting (15) using symbolically explorer version into equations (12)-(14),  

( )
( ) ( ) ( )

( )

2 2
1 2

1 2 3
0 1 0 0 0 0

3 1 2
1 0

2 0

0

0

e

k v P Q R

i v T k P i vk vC kK Q i vk a vT R

D k P kD aQ i kv kD b R

λ μ ρ β β

τ ω β τ ρ τ

β τ ω

−

−

+ − + + =

− + + + − + + =⎡ ⎤⎣ ⎦

⎡ ⎤− + + + − =⎣ ⎦

      (16) 

The system of equations (16) has a non-trivial solution if the determinant of the coefficients 

vanishes. This leads to the cubic equation in 2v .  
6 4 2

0 1 2 3 0A v A v A v A+ + + =                                                      (17) 
where 

( )( )
( )( ) ( ) ( )( )
( ) ( )
( )( ) ( )

( )( ) ( )

1 2
0 0 1

1 1 2
1 1 0 0 1 0 1

1 2 1
0 0 0 1

2 1
2 0 0 1

1 2 1
0 1 2 1 0 2 0

3
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        +

2

        + 2

e

e

e

e

e

A i i C

A C i i i i T

i C Db T a i D K

A D T a C b i K iK

D i b a T D i C bK

A D K b

τ ω τ ω ρ

τ ω λ μ ρ τ ω τ ω τ ω β

ρω τ ω ρ τ ω τ

ω ρ τ ω τ ω λ μ

ω τ ω β β β ω β ρ τ ω ρ

ω λ

−

− −

− −

−

− −

= + +

= + + + + + +

+ + + +

⎡ ⎤= − + + − − +⎣ ⎦
⎡ ⎤+ + − + +⎣ ⎦

= +( ) 2
22μ β⎡ ⎤−⎣ ⎦

                  (18) 

Particular Cases 
In the absence of mass concentration 2 0,a β= = and thermo-mechanical coupling 1 0β = , the 

matrix (17) reduces to (19), corresponding to three elastic waves propagating in any fixed direction. 

( ) ( )( )( )2 2 2
1 32 0ev i v Db v C Kλ μ ρ τ ω ω τ ρ⎡ ⎤+ − − + + − =⎣ ⎦                          (19) 

where  13 0 iτ τ ω−= + . 

In the absence of mass concentration 
2 0 ,a β= = and thermo-mechanical coupling 

1 0β ≠ , 

      ( ) ( )2 4 2 2
3 3 3 0 12 2 0e eC v C K T v Kτ ρ τ ρ λ μ ρ τ β λ μ⎡ ⎤− + + + + − + =⎣ ⎦                     (20a) 

( ) 12
1v D b iω τ ω −= +                                    (20b) 

The secular equation (17) decoupled, (20a) in this case reduce to quadratic in 2v having in 
general, complex roots. Equation (20b) corresponds to the mass diffusion wave. 
NUMERICAL  RESULTS 

 For computational work, the following material constants at T0 = 27±C are considered for an 
elastic solid with generalized thermodiffusion  

11 2

11 2

3

0

5.775 10 / ,
2.646 10 / ,
2.7 / ,
2.361 / ,e

dyne cm
dyne cm

gm cm
C cal gm C

λ

μ

ρ

= ×

= ×

=

=
           

0

0 1

1

0.492 / ,
0.05 , 0.04 , 0.05, 0.06

2 , 0.005, 0.05, 0.5
t c

K cal cms C
s s

s a b D

τ τ α α

ω −

=
= = = =

= = = =

 

The cubic equation (17) is solved by the computer program of Cardan method to obtain the 
numerical values of velocities of three dilatational waves viz.,P, MD and T waves, the variations of 
velocities. 
CONCLUSIONS 

Generalized thermoelastic diffusive waves in heat conducting solids are investigated using 
computational techniques and symbolically. It is exhibited that how easily one can study that the 
generalized thermoelastic diffusive waves are significantly affected by the interacting parameters 
using this computational technique. Finally, the results are discussed graphically. 
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Figure 1. Variations of velocities of 

Massdiffusive, Elastodiffusive, thermodiffusive 
and waves with thermal relaxation times 

Figure 2. Variations of velocities of Massdiffusive, 
Elastodiffusive, thermodiffusive and waves with 

thermodiffusion constant D 
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