
 

© copyright FACULTY of ENGINEERING ‐ HUNEDOARA, ROMANIA  125 

1. Anca-Elena IORDAN  
 
 

DEVELOPMENT OF INTERACTIVE DIDACTIC SOFTWARE 
USED IN THE STUDY OF TERNARY TREES 
 
1. UNIVERSITY POLITECHNICA OF TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA, ROMANIA 
 
ABSTRACT: This work presents the needful phases required for object oriented development of 
interactive didactic software used in the study of ternary trees. The development of the software is 
achieved about specifically UML diagrams representing the phases of analysis, design and 
implementation, hereby the software being described in a terse and outright layout. The software is 
much helpful to both students and teacher’s forasmuch computer programming area, for the most 
part trees theory area, is difficult to understand for most students. 
KEYWORDS: Ternary Trees, Complete Ternary Trees, Ternary Search Trees, UML, Interactive Didactic 
Software, Java 
 
INTRODUCTION IN TERNARY TREES THEORY 

In computer science, a ternary tree [1,2] is a tree data structure in which each node has at the 
very outside three child nodes, accustomed distinguished as "left", “mid” and "right". Nodes with 
children are parent nodes, and child nodes may contain references to their parents. With the 
exception of the tree, there is frequently a reference to the "root" node (the ancestor of all nodes), if 
it exists. Any node in the data structure can be reached by starting at root node and repeatedly 
following references to either the left, mid or right child. 
DEVELOPMENT PHASES OF INTERACTIVE DIDACTIC SOFTWARE 

By virtue of more complicated problems, the programmers can not type immediate the code 
when they know the technical requirement and program designing became an industry for witch the 
programming is only one of sides. Therefore was born programming engineering that boards software 
complexity and autonomy, the abstractions introduced in new technologies, people, programs quality 
and evolution management, object orientated analysing and designing.   

UML [3] offers assistance for realizing of sizeable grade object orientated analysing and 
designing, whichever represent significant elements to the effect that obtain good and hard software. 
Analysis Phase 

 Using Unified Modelling Language, didactic software analysis consists in achivement of use case 
diagram and activity diagrams. To design diagrams was used the ArgoUML software [4]. The didactic 
software is described in a outright and terse layout by representing the use cases [5]. Each case 
describes the interactions of user and software.  

Use case diagram is created in 
an iterative approach. At the start, 
there were identified the actors, 
starting from problem formulating by 
identifying the role played by 
different persons and external 
resources that are implicated in 
interactions. Identifying the uses cases 
and the relations between them was 
based on the analysing the 
responsibilities accomplished by every 
actor and also the global specification 
that are referring to the functional 
requisites.  Use case diagram design is 
shown in figure 1.  

Diagram defines the area of 
software, allowing classic view of the proportion and sphere of the activity for the whole propagation 
process. This includes:  

 
Figure 1. Use Cases Diagram 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering 

Tome XI (Year 2013). Fascicule 4. ISSN 1584 – 2673 126 

 one actor - the user that have external entities with which the software interacts;  
 six use cases that describe the functionality of the ineractive didactic software;   
 relationships between user and use cases, relationships between use cases (dependency and 

generalization relationships), and relationships between actors. 
Beyond realizing the user needful specifications, there appears the query to look for fine 

points, using activity diagrams [6]. 
Design Phase 

Object orientated procedures introduced the performing of the static structure of software 
using classes and relations among them. This performing is succeeded from entity-relation diagram. 

Conceptual modelling allows identifying the handsomest objects for the interactive didactic 
software [7]. Inheritance was not used only as a generalization device, which is when derived classes 
are specializations of the base class. In figure 2 are presented as inheritance relationships, realization 
relationships, composition relationships and aggregation relationships.  

We can observe that the TTreeProject classe inherit attributes and methods of the JFrame 
class, but implements the ActionListener interface.  

TTreeParameter class inherits attributes and methods of the JDialog class, but implements the 
interface ActionListener. TTreeDrawing class inherit attributes and methods of the JPanel class, but 
implements Runnable interface, and TTreeDescendant class inherits attributes and methods of the 
JPanel class and implements the ActionListener interface. 

In the composition relationship, unlike the aggregation relationship, the instance can not exist 
without the party objects. Analyzing figure 2 we can observe that an instance of TTreeDrawing type 
consists in one objects of TTree type, one of Graphics2D type and the other of Thread type. 

Aggregation relationship is an association where it’s specified who is integer and who is a part. 
For example, an object of TTreeVertex type or represent a part from an object of TTree type. 

 
Figure 2. Classes Diagram 

Sequence diagram emphasizes the temporal semblace [8], being suitable for real-time 
specifications and complex scenarios. These diagrams determine the objects and classes involved in a 
scenario and sequence of messages sent between objects necessary to execute script functionality. 

Diagram presented in figure 3 shows the interactions between objects that are aimed to create 
a ternary tree. We can observe that there are interactions between 14 objects of which the objects of 
TTreeProject, Checkbox, TTreeDrawing, JButton, JTextFiled and Graphics2D type are already created, 
and objects of TTree, TTreeParameter, TTreeVertex and TTreeDescendant type will instantiate during 
interactions. 

Diagram presented in figure 4 shows the interactions between objects that are aimed to ternary 
tree traversal in inorder. We can observe that there are interactions between 7 objects of which the 
objects of TTreeProject, JButton, JTextArea, TTreeDrawing and TTree type are already created, and 
objects of Thread and Vector<TTreeVertex> type will instantiate during interactions. 
Implementation Phase 

 Component diagram [9] is suchlike to packages diagram, allowing visualization of how the 
software is divided and the dependencies amongst modules. Component diagram put emphasis on 
software physical elements and not on the logical elements like in case of packages.  

The diagram in figure 5 describes the collection of components that together provide system 
functionality. 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering 
 

Tome XI (Year 2013). Fascicule 4. ISSN 1584 – 2673  127 

 
Figure 3. Sequence diagram for create of a ternary tree 

 
Figure 4. Sequence diagram for ternary tree traversal in inorder 

Central component of the diagram is TTreeProject.class, a component obtained by transforming 
by the Java compiler into executable code of the TTreeProject.java component. As can be seen that 
component interacts directly with component TTreeDrawing.class. Component TTreeDrawing.class 
that is obtained by Java compiler from component TTreeDrawing.java in executable code interactions 
directly with components TTreeDescendant.class, TTree.class and TTreeParameter.class. Component 
TTree.class interactions directly with components Tree.class, TTreeVertex.class and TTreeEdges.class. 

 



ANNALS OF FACULTY ENGINEERING HUNEDOARA – International Journal Of Engineering 

Tome XI (Year 2013). Fascicule 4. ISSN 1584 – 2673 128 

 
Figure 5. Component diagram 

GRAPHICAL INTERFACE 
The interactive software was implemented in Java [10] as independent application. By using 

visual simulations in computer assisted learning the efficiency of learning is increased. Starting from 
specified requisites in uses cases diagram (figure 1) it was designed graphical user interface of the 
didactic software which is presented in figures 6. 

 
Figure 6. Ternary tree traversal in inorder 

The main page of the application contains buttons for selecting the following options: ternary 
tree creation, ternary tree traversal in preorder, ternary tree traversal in postorder, ternary tree 
traversal in inorder and search a value in ternary search tree. 
CONCLUSIONS 

About performing of diagrams for all three phases: analysis, design and implementation, the 
interactive didactic software has been presented in a outright and terse layout. The use of the Unified 
Modeling Language for the achievement of the diagrams is characterized by stringent syntactic, rich 
semantic and visual modeling sustentation. 

The diagrams were made using a further approach, multidisciplinary of the informatics 
application, encompassing both modern pedagogy methodologies and discipline specific components. 
The nexus of teaching activities and scientific aims and objectives was established about the design of 
the new methods and the assimilation of further paths, capable of enhancing school showing, enabling 
students to acquire the knowledge and techniques required and apply them in optimal conditions. 
REFERENCES 
[1] V. Voloshin, introduction to Graph Theory, Nova Science Publishers Inc., 2009 
[2] R. Merris, Graph theory, John Wiley & Sons Ltd, 2000 
[3] K. Lunn, Software Development with UML, Palgrave Macmillan, 2002 
[4] http://argouml.tigris.org 
[5] P. Stevens, Using UML: Software Engineering with Objects and Components, Addison-Wesley Educational 

Publishers Inc., 2005 
[6] S. Bennett, J. Skelton, K. Lunn, Schaum’s Outline of UML, McGraw Hill, 2004 
[7] L. Craig, Applying UML and Patterns, Pearson Education, 2004 
[8] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison Wesley, 1999 
[9] M. Fowler, K. Scott, UML Distilled: A Brief Guide to the Standard Object Modeling Language, Addison 

Wesley, Readings MA, USA, 2000 
[10] K. Arnold, J. Gosling, The Java Programming Language, Addison-Wesley, 2005  
 


