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: y two dimensional laminar MHD mixed convection

transfer against a heated vertical semi-infinite permeable surface in a porous medium has been
discussed. The coupled nonlinear partial dlfgerential equations describing the conservation of mass,
momentum and energy are solved by perturbation technique. The results are presented to illustrate
the influence of Hartmann number(M), Prandtl number(Pr), permeability parameter(Kp,),
suction/blowing parameter(f,), heat generation/absorption co-efficient( =) and mixed convection or
buo%anc parameter( ). The effects of different parameters on the velocity and temperature as well
as the skin friction and wall heat transfer are discussed with the help of figures.

KEY;{ORDS: MHD flow; Mixed convection; Porous medium; Heat transfer; Stagnation point; Skin-
riction

INTRODUCTION

Stagnation point flow has become an interesting area of research due to its varied applications
both in industrial and scientific applications such as extrusion of polymers, cooling of metallic plates,
aerodynamics plastic extrusion, glass blowing and fiber spinning etc. The two-dimensional flow of a
fluid near a stagnation point is a classical problem in fluid dynamics. The plane and axisymmetric flow
near a stagnation point on a surface have attracted many investigators during the past several
decades because of its wide applications such as cooling of electronic devices by fans, cooling of
nuclear reactors and many hydrodynamic processes. Hiemenz[1] has been investigated the two-
dimensional stagnation flow over a plate and developed an exact solution to the Navier-Stokes
equations. Raptis et al.[2] have presented the steady forced convection flow through a porous medium
bounded by a semi-infinite plate when the fluid is viscous and the free stream velocity is not
constant. The combined forced and free convection in stagnation flows becomes important as the
buoyancy forces owing to the temperature differences between the surface and the free stream is
large. The steady two-dimensional mixed convection of an incompressible fluid in a porous medium
past a hot vertical impermeable plate is analyzed by Takhar et al.[3].

In many physical situations, the heat generation or absorption effects in the fluid are greatly
dependent on temperature. Sparrow et al.[4] have discussed the temperature dependent heat sources
or sinks in a stagnation point flow. Chamkha[5] has investigated steady two dimensional mixed
convection flows of an electrically conducting and heat absorbing fluid near a stagnation point on a
semi-infinite vertical permeable surface at arbitrary surface heat flux variations in the presence of a
magnetic field. Gorla et al.[6] have discussed mixed convection in stagnation flows of micropolar
fluids over vertical surfaces with non-uniform surface heat flux. Yih[7] has presented numerically the
effect of heat source/sink on steady two- dimensional laminar MHD mixed convection owing to the
stagnation flow against a vertical permeable flat plate with linear wall temperature in a fluid
saturated porous medium. Wu et al.[8] have analyzed the stagnation point flow in porous media and
presented non-linear exact and asymptotic solutions. Abdelkhalek[9] has discussed the skin friction in
the MHD mixed convection stagnation point with mass transfer. Kumaran et al.[10] have employed a
new implicit perturbation scheme to obtain approximate solution to stagnation point flow in porous
media. Attia[11] has discussed the stagnation point flow and heat transfer of a micropolar fluid with
uniform suction or blowing. Bachok et al.[12] have analyzed the MHD stagnation point flow of a
micropolar fluid with prescribed wall heat flux. Singh et al.[13] have discussed the effects of
volumetric heat generation/absorption on mixed convection stagnation point flow on an iso-thermal
vertical plate in porous media. Dubey at el.[14] have studied the mixed convection of non-Newtonian
fluids through porous medium along a heated vertical flat plate with magnetic. Recently, the mixed
convection boundary layer flow past a vertical plate in porous medium with viscous dissipation and
variable permeability has studied by Singh [15]. Fan et al.[16] have investigated the mixed convection
heat transfer in horizontal channel filled with nanofluids.

© copyright FACULTY of ENGINEERING - HUNEDOARA, ROMANIA 241



ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

The objective of the present study is to investigate the MHD mixed convection stagnation point
flow and heat transfer in a porous medium in presence of a transverse uniform magnetic field. It is
necessary to study the free convection effects on the flow through porous medium and to estimate its
effect on the heat transfer which is one of the objectives of the present study. A few problems have
been solved on buoyancy assisting flow with constant wall heat flux i.e. linear variation of wall
temperature. The above cases referring Abdelkhalek [9] allowing the flow through a porous medium
with an additional constraint has been considered.

Consider two-dimensional steady, laminar, hydromagnetic, mixed convection stagnation point
flow impinging on a heated vertical semi-infinite permeable surface. The fluid is assumed Newtonian,
viscous, electrically conducting and generates or absorbs heat at uniform rate. The y-axis is taken
along the plate and the x-axis is normal to it. A uniform magnetic field is applied in the x-direction
causing a flow resistive force in the y-direction. When the electrical conductivity is large i.e. for large
magnetic Reynolds number, the diffusion of the magnetic field takes place in a narrow zone called the
magnetic boundary layer and is of the same size as that of viscous and thermal boundary layers. In
this case boundary layer equations for incompressible flow, for velocity and magnetic field must be
solved simultaneously. When the electrical conductivity of the fluid is small i.e. for small magnetic
Reynolds number, the thickness of the magnetic boundary layer is very large. In this case the flow
direction component of the magnetic interaction of the corresponding Joule heating is only a function
of the transverse magnetic field and the local velocity in the flow direction. Changes in the transverse
magnetic field component and pressure across the boundary layer are negligible. The induced
magnetic field is neglected in comparison with the applied magnetic field, which is taken in the
transverse direction. Moreover, it is the transverse component of the magnetic field which affects the
motion appreciably. The magnetic Reynolds number is assumed to be small, so that the induced
magnetic field will be neglected. The free stream is moving with a uniform velocity U. and is at a
constant temperature T.. The permeable plate or surface is subjected to heat flux q,(x) and uniform
suction or blowing. Under these conditions and taking into account the Boussinesq and the boundary
layer approximation, the system of continuity, momentum and energy equations for a Darcyan viscous
flow can be written as:

ML (1)
ox 0oy
2 B 2
w0 OBy g VR ULy 4 g BT - T 2)
ox Oy vt P K

2 2
ua—T+va—T:a 6T+6T + 2 (T-T,) (3)
axZ ayZ IOCp
It should be noted that in writing equations (1)-(3), the magnetic Reynolds number is assumed
small so that the induced magnetic field is neglected. Also, the Hall effect of magnetohyrdodynamics,
Joulean heating and the viscous dissipation are neglected. The heat generation or absorption term
(last term of equation (3)) is assumed to vary linearly with the difference of the fluid temperature in
the boundary layer and the ambient temperature.
The boundary conditions are

M) _~¢,(x) _—ax’
Equations (2) and (3) are reduced to ordinary differential

equations by the similarity transformation technique, which Y
requires the introduction of the stream function y through the

relations

y=0:u(x)=0, v(y)=-v,, , yoo: ulx)-»>U,, Tx)>T, (4)

Uu=y,, v=-y, (5)

In order to transform the partial differential equations into

ordinary differential equations we introduced a new set of
independent and dependent variables defined by

Bo

1/2
w = (0b)" " xf (), ﬂ:(*) v, y=Gr, /(Re»”,T—[?”‘]Re;mewx ) x : X
1% f
Equations (2) and (3) now reduced to the following coupled Diagram 1. Flow diagram
ordinary differential equations
" =M+ f 4 Ki)f' =—zy0— (M + Ki)m (7)
p p
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1

P—9”+f6'+¢9=f’0 (8)

T

The appropriate flat plate, free convection boundary conditions are also transformed into the form
n=0: f=f, f'=0, 8=-1; npnowo: />0, 650 (%)

In the above equations, primes denote differentiation with respect to 1, Pr=v/a is the

Prandtl number, M 20'302 /(bp) is the magnetic parameter, K 6 =bK/v is the permeability

parameter, Re =bx’/uv is the local Reynolds number, m=U,, /(bx), Gr, = gfq,, Rexz/(szf)

is the local Grashoff number, ¢ =Q,/(bpC p) is the heat generation or absorption coefficient,

7 =Gr, /(Re,)”"? is the buoyancy parameter and f, =v,/~/ub is the suction parameter.
The resulting differential equations contain arbitrary parameters, the Prandtl number Pr, the
magnetic parameter M, the porosity parameter K, and the buoyancy parameter y . Bhatanagar and

Palekar[17] the solutions of the resulting semi-infinite domain, nonlinear equations are accomplished
with a three part series method. The series for velocity and temperature are given below:

f=kg+e,+6 o+ f+ . (10)
0 =60, +80y + 0 oo, (11)

The employed series, equation (10), contains term k, that satisfies the boundary conditions and

differential equations at infinity, the second term satisfies the boundary conditions at zero and is the
solution to the initial homogeneous differential equation and the additional terms that are utilized to
obtain increased numerical accuracy. This accuracy is limited by the number of terms that will not
initiate divergence of the numerical results.

The corresponding boundary conditions are

n=0: fi=f, £,=0,£,=0, £ =0,£,, =0, £, =0 ' =-1,0=0,6/=0
n—oo: f{>0,f,>0/f->0, 6500500 >0 (12)
The temperature representation i.e. equation (11) along with equation (10) and the associated
boundary conditions (12) contain an undetermined parameter & which helps in the collection of terms
for each set of the resulting differential equations. Substituting the series given in equations (10) and
(11) in equations (7) and (8) respectively and equating the like powers of &, we get the following
equations.

" ” 1 ’
£ vk, f, —(M+K—)fl =276, (13)
)4
1 " 1

—0" +k,0 +¢60, =0 (14)

Pr

n ” 1 ’ n !/
S+ kS, _(M"‘K_)fz =-ff +(U )2_2792 (15)
P
1 " ’ !, ’
Eaz +k092 +¢02 :f1‘91 _flal (16)
m " 1 [ " " AN (17)
A A e VAR ARV WAL
P
1 4 ’ ’ ’ ’ ’
E(% +k,0, + 90, =16, — 1.0 + 160, + 16, (18)
Solutions of the above equations are given by
6, =L e (19)
a

fi=a, +ase” ™ +aye” (20)
0, = az;e” " + age” T 4 qgpe (21)
fr=ay +ae™ " +age” ™ +asne” " +a e N (22)
0; = (6128772 +aygn +azs)e " +(azyon +az, )e_(alﬂm’7 +a326_2am +as3e_(al+2a3)’7 +034e_(a3+2a')’7 (23)

2 - 2 - —(a;+
[y = ass + (@ +agn +asy)e” " + (g’ +agn+asy)e™ " +(asyy +asy)e "

—(az+2a))n

(24)

—2an —(@+2a3)n
+asee +as;e +asge
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Substituting equations (19)-(24) into equations (10) and (11), we can get the required
representation for f and 6.The constant k, is determined by satisfying the boundary condition f(0)

and is a function of Pr and M. Getting the velocity and the temperature expression, we can calculate
the skin friction and the rate of heat transfer in terms of Nusselt number.

The steady two dimensional MHD mixed convection stagnation point flow past a heated vertical
semi-infinite permeable surface embedded in a porous medium is carried out for different pertinent
parameters. The main aim of the discussion is to bring out the effect of buoyancy assisting parameter
(z) and linear non-uniform wall heat flux parameter (n) in the presence of uniform porous matrix and
uniform magnetic field inducing a flow resistive force in the y-direction. Further, the effect of
buoyancy parameter is also to be investigated.
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Fig-1 Effect of M & K, on non-dimensional wall Fig-2 Effect of M & K, on non-dimensional wall
velocity gradient when Pr=0.7, f,,=0.0, k =1.3592 temperature gradient when Pr=0.7, f,,=0.0, k
and n=0.0 =1.3592,4=0.0 and 1=0.0

Figs.1 and 2 depict the effects of buoyancy
parameter (¥ ) and magnetic parameter (M) on the

non-dimensional surface velocity gradient f"(0)
and non-dimensional wall temperature gradient
—0'(0) respectively with and without porous
matrix. As magnetic parameter increases, the
surface velocity gradient as well as the wall
temperature gradient decreases. In absence of
magnetic field and porous matrix (M=0.0 and
K,=100), a sudden rise in the surface velocity
gradient and the wall temperature gradient is
marked (Curve-VI of fig.1 and Curve-V of fig.2). In

ooee ) TC TS0y B2 e mewmeme w2 absence of porous matrix, an increase in magnetic
Fig-2(a) Effect of M & K, on non-dimensional wall field leads to decrease the velocity gradient as
temperature gradient when Pr=0.7, f,=0.0, k well as the wall temperature gradient which is in
=1.3592,4=0.0 and 1=0.0 good agreement with Abdelkhalek [9](Table-1). It

is concluded that the imposed magnetic field

reduces the velocity field as well as temperature field. Due to onset of free convection current and an
increasing value of buoyancy parameter for buoyancy assisting flow, the surface velocity gradient and
wall temperature gradient increases which means velocity and temperature distribution decreases.
This may be attributed to the cooling of the plate. From the figure-2 it is clear that an increase in

¥ (increase in Gr,), leads to an increase in the temperature gradient(— 0'(0) ) at the plate.
Fig.2(a) shows the effect of buoyancy parameter (y ) and magnetic parameter (M) on the non-
dimensional wall temperature gradient —6'(0) with and without porous matrix. It is marked that for

larger value of the buoyancy parameter, the change in wall temperature gradient follows the same
trend as that of smaller value in fig.2.

owonw=292 | =
ooo:gooﬂl

0.100 4

Table-1 Table-2
\ Present results Abdelkhalek[13] | Present results Abdelkhalek[13]
M f(0) -6'(0) £(0) -6'(0) P, f'(0) -6'(0) £(0) -6'(0)
0 0.05548 | 0.10019 | 0.14707 | 0.10362 0.70 0.03946 | 0.10004 | 0.04799 | 0.10010
3 0.03946 | 0.10004 | 0.04799 | 0.10010 100.00 0.00001 | 0.10000 | 0.00001 | 0.10000
5 0.03438 | 0.10002 | 0.03943 | 0.10004
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Figs.3 and 4 illustrates the various values of the Prandtl number (Pr) on the non-dimensional
wall velocity gradient and non-dimensional wall temperature gradient profiles respectively in
presence and absence of porous matrix. An increase in Prandt! number reduces the thermal boundary
layer thickness along the plate. This gives a reduction in the fluid temperature. This trend is due to
the fluid with higher viscosity and this causes a reduction in shear stress. Increase in the buoyancy
parameter (y ) increases the skin-friction and Nusselt number for buoyancy assisting flows (z =1). In

absence of porous matrix (K,=100), increase in Prandtl number decreases both surface velocity
gradient and wall temperature gradient which is good agreement with the result obtained by
Abdelkhalek [9]( Table-2). It is interesting to note from the curves VI and VIl of fig.3 that presence of
porous matrix is found to be ineffective to modify the velocity gradient in case of high Prandtl
number fluid i.e. the fluid with low thermal diffusivity.
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Fig-3 Effect of Pr & K, on non-dimensional wall
velocity gradient when M=3.0, f,=0.0, k
=1.3592,4=3.0 and 1=0.0

Fig-4 Effect of Pr & K, o

n non-dimensional wall

temperature gradient when M= 3.0, f,=0.0, k
=1.3592,¢4=0.0 and 7=0.0

Curves for K, =100 and K, =1000 and more coincide and hence we treat high value of K, as

absence of porous matrix (Curves Vil & IX).
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=1.3592 and 7=0.0

0.1030

0.1025

0.1020

0.1015

=0.1010

-0 '(0)

0.1005

0.1000 1

0.0095

0.0 10 2.0 3.0 40 5.0
Y i

Fig-6 Effect of K, on non-dimensional wall
temperature gradient when Pr = 0.7, M= 3.0,
fw=0.0, k =1.3592,4=0.0 and n=0.0

Figs.5 and 6 show the effect of permeability parameter (K,) on the dimensionless surface
velocity gradient and dimensionless wall temperature gradient respectively. It is observed that in
absence of porous matrix, both surface velocity gradient and wall temperature gradient increase.
Which indicates greater shearing stress is experienced on the surface of the wall.

Figs.7 and 8 depict the effect of suction or blowing parameter ( f,,) on the dimensionless
surface velocity gradient and dimensionless wall temperature gradient respectively in presence and in
absence of porous matrix. It should be noted here that positive value of f, indicates fluid suction at
the surface while negative values of f, correspond to fluid blowing or injection at the surface. The
effect of suction is to make the velocity and temperature distribution more uniform within the
boundary layer. Imposition of fluid suction at the surface has a tendency to reduce both the
hydrodynamic and thermal thickness of the boundary layer where viscous effects dominate. This
results in decreasing the surface velocity gradient and increasing surface temperature gradient in
presence of porous matrix. Also the same effect has been occurred for fluid blowing at the surface in
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presence of porous matrix. This result of ours is in good agreement with the device of boundary layer
control by applying suction on the moving surface. So in the present problem presence of porous
matrix suggest a controlling device for reducing boundary-layer thickness.
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Fig-7 Effect of f., & K, on non-dimensional wall Fig-8 Effect of f,, & K, on non-dimensional wall
velocity gradient when Pr = 0.7, M= 3.0, f,=0.0, k temperature gradient when Pr = 0.7, M= 3.0,
=1.3592 and 7=0.0 fw=0.0, k =1.3592,4=0.0 and n=0.0

Further in case of blowing the same effect is observed in the presence of porous matrix
suggesting that boundary-layer effect can be controlled by embedding the moving surface in a porous
matrix. But in absence of porous matrix (K,=100), the fluid suction and the fluid blowing enhance the
surface velocity gradient. On the other hand, in absence of porous matrix (K,=100), the fluid suction
enhances the surface temperature gradient at all points (Curve-VIl of fig.8) where as fluid blowing
reduces the surface temperature gradient up to certain range of buoyancy parameter and then
increases(Curve-VIll of fig.8). On careful observation, the curve Vil exhibits the initial fall and rise in
temperature gradient due to the presence of suction and high value of permeability. Further, it is to
note that presence of injection with high permeability accelerates the wall temperature gradient.
The above facts reveal that suction with low buoyancy effect (i.e. small value of isy ) is found to be
counterproductive for enhancing the wall temperature gradient. The high value of buoyancy effect is

beneficial for higher temperature gradient. Hence, buoyancy parameter has a dual role in modifying
the temperature gradient in the presence of suction.
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Fig-9 Effect of ¢ & K, on non-dimensional wall Fig-10 Effect of ¢ & K, on Nusselt number when
velocity gradient when Pr = 0.7, M= 3.0, f,=0.0, k Pr=0.7, M= 3.0, f,=0.0, k =1.3592 and n=0.0
=1.3592 and 1=0.0
Figs.9 and 10 illustrate the effect of

heat generation or absorption coefficient (¢ ) T rest 3 Abdelkhalek[13]
on both non-dimensional surface velocity @ £(0) ) I20) W)
gradient and Nusselt number respectively with 0.2 0.03333 | 10.84475 | 0.04025 10.85369
or without porous matrix. It should be noted 0.2 0.05085 7. 84438 0.06175 7. 89531

that positive value of ¢ means heat

generation (source) and negative value of ¢ means heat absorption (sink). In presence of porous

matrix decrease in heat generation or absorption coefficient decreases the non-dimensional surface
velocity gradient and increases the Nusselt number for buoyancy assisting flow. Also, in absence of
porous matrix, decrease in heat generation or absorption coefficient decreases the non-dimensional
surface velocity gradient and increases the Nusselt number which is an excellent agreement with the
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result obtained by Abdelkhalek [9](Table-3). The change in y produces change(both
decrease/increase) in buoyancy effect in the presence of heat source causing the rise/fall in velocity
gradient whereas change in ¢ fails to affect rate of heat transfer y wise variation but addition or

deletion of heat energy varies with the strength of heat source/sink.

CONCLUSIONS

A theoretical study of steady two dimensional laminar MHD mixed convection stagnation point
flow and heat transfer against a heated vertical semi-infinite permeable surface in a porous medium
has been presented. Some of the important findings of the study are given below.

OO In presence of porous matrix the imposed magnetic field reduces the velocity field as well as the

temperature field.

gradient decrease.

O O oOoO

An increase in Prandtl number reduces the thermal boundary layer along the plate.
Due to the presence of porous matrix, both surface velocity gradient and wall temperature

The effect of fluid suction and fluid blowing is to reduce the surface velocity gradient and to
enhance the wall temperature gradient respectively in presence of porous matrix.
In presence of porous matrix decrease in heat generation or absorption coefficient decreases the

non-dimensional surface velocity gradient and increases the Nusselt number.

Nomenclature

x, y Coordinate axes

u, v Velocity components in the x and y directions
n, a Constants

b Characteristic time or time rate constant

By The magnetic induction

C, The specific heat at constant pressure

vy The suction or injection velocity

fw The wall suction parameter
g The acceleration and z is a parameter such that z =1

denotes buoyancy assisting T,>T, and z =-1

corresponds to buoyancy opposing T,, < T,

Gry The local Grashoff number

K: The fluid thermal conductivity

M The Hartmann number

Pr The Prandtl number

Qo The dimensional heat generation or absorption
coefficient

Re, The local Reynolds number

T Temperature of the fluid

T, Temperature of the fluid far away from the plate
T, Wall temperature

U Non-dimensional velocity component

Greek letters

The thermal diffusivity

The coefficient of thermal expansion

The kinematic viscosity
The fluid density

The dimensionless heat generation or absorption
coefficient

o The fluid electrical conductivity

Subscripts

w  Condition on the wall

o Free-stream condition

< DT ™R

Appendix

1
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a3 | 4dgs
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_ _ag(a; +ay) __ ay __ap(a +4)+ay _ a3
Ay =0g —a1dpdg —— —— , Qg =~ —— ——, 4y = 5 » d3g =
a, 2(a; +4y) (a; +4) asy(ay+a; +4)

Tome XI (Year 2013). Fascicule 4. ISSN 1584 — 2673

247



ANNALS OF FACULTY ENGINEERING HUNEDOARA - International Journal Of Engineering

dy(ay +2a; + 4)) 4 Ay s = ays Gow = [
sy =———————,d33 = )
a32(a1 vay +A4)° as(a +ay+4) a;(2a; + 4) 2ay(a; +2a5 + 4))

asz =

ayy 1
= » d3s =—{a29 +ayy —ay(a) +az) —2a,a3, —(a; +2a3)as; — (a3 +2a1)a34}
2a; +ay + 4)(a, +a3) a,

asq

_ 2 2 2
U6 =2a304015 = As03" A9 — A3 A5y, Q37 = —A4a3 Ays, A3y = —ZMyg, d39 = —ZJsg,
2 2
Ao =—ya) A1z —ay Ay —Z)3,
_ 2 2 2 2 2 5
ayp =—ay(a +a3)"ayg —a,"asayg — a3 ayg — a4, aay9 — a3 asayg +2a1a3asa15 + a1a,a3019 — QA ay5 — Z)a3,
2 2
Ay =—z)ay, a4 =—as(a, +as) aje —as"asayg +2azas(a; +az)a;e —zyass ,

a36 a3

2 2
ays = —ay(a) +az)"aj6 —ay; aa16 +2a1a,(a) +a3)a16 — 23y, Ay = y dyg = ’
2a5(a; + @) ay(a; +ay)(az —ay)

do = a3z 4+ %6 (2a; + o) G = d39 (a3 —ay)(2a; + ay)2as8
47 — ) 49 — - )
as(ay +ay) a32(a3 +a))? ay(ay +a)as —ay)  [a(a, +a,)(as —a))]
g = Ay (a3 -3a, - asg + (a3 —a))(2a; + a;)as, g — —ay
50 — 1 51 — ’
a)(a; +ay)(az —a;) [a,(a; +a))(a; —a; ) ay(a; +az)a; +a; + )
B —ay a; +as)a; +ay +a))+a,(a; +as)ay, B
dsp = - 5 » 55 = —ds3 —dsy
a\(a; +a3)a; +as +a;) [a)(a; +a3)(a; + a5 + )]
2a,a a
Ay7 +ay9 —ayasy +asy —(a; +az)as, — — + 4
e = 2a,2a; + o) (a3 —2a)) (a; +2a; +a;)(a; +a3)
53 =

a3 n s
(a3 +2a; + )24,
N Ay3 _ Ayq _ Ays
2a,(2a, +a)ay —2a;) (a;+2a5)(a, +2a; +a,)a; +az) 2a,(a; +2a, +a,)(a; +2a;) ’

asq =dsg Tas

= a43 a = _a44 a — _a45
2a,Qa; +ay)as —2a,)” O (a,+a3)a; +2a5)a, +2a; + ) 0 2a,(2a, +a3)(2a, +a; +a;)
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