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ABSTRACT: The effects of steady two dimensional laminar MHD mixed convection flow and heat 
transfer against a heated vertical semi-infinite permeable surface in a porous medium has been 
discussed. The coupled nonlinear partial differential equations describing the conservation of mass, 
momentum and energy are solved by perturbation technique. The results are presented to illustrate 
the influence of Hartmann number(M), Prandtl number(Pr), permeability parameter(Kp), 
suction/blowing parameter(fw), heat generation/absorption co-efficient(φ ) and mixed convection or 
buoyancy parameter(γ ). The effects of different parameters on the velocity and temperature as well 
as the skin friction and wall heat transfer are discussed with the help of figures. 
KEYWORDS: MHD flow; Mixed convection; Porous medium; Heat transfer; Stagnation point;  Skin-
friction 
 
INTRODUCTION 

Stagnation point flow has become an interesting area of research due to its varied applications 
both in industrial and scientific applications such as extrusion of polymers, cooling of metallic plates, 
aerodynamics plastic extrusion, glass blowing and fiber spinning etc. The two-dimensional flow of a 
fluid near a stagnation point is a classical problem in fluid dynamics. The plane and axisymmetric flow 
near a stagnation point on a surface have attracted many investigators during the past several 
decades because of its wide applications such as cooling of electronic devices by fans, cooling of 
nuclear reactors and many hydrodynamic processes. Hiemenz[1] has been investigated the two-
dimensional stagnation flow over a plate and developed an exact solution to the Navier-Stokes 
equations. Raptis et al.[2] have presented the steady forced convection flow through a porous medium 
bounded by a semi-infinite plate when the fluid is viscous and the free stream velocity is not 
constant. The combined forced and free convection in stagnation flows becomes important as the 
buoyancy forces owing to the temperature differences between the surface and the free stream is 
large. The steady two-dimensional mixed convection of an incompressible fluid in a porous medium 
past a hot vertical impermeable plate is analyzed by Takhar et al.[3]. 

In many physical situations, the heat generation or absorption effects in the fluid are greatly 
dependent on temperature. Sparrow et al.[4] have discussed the temperature dependent heat sources 
or sinks in a stagnation point flow. Chamkha[5] has investigated steady two dimensional mixed 
convection flows of an electrically conducting and heat absorbing fluid near a stagnation point on a 
semi-infinite vertical permeable surface at arbitrary surface heat flux variations in the presence of a 
magnetic field. Gorla et al.[6] have discussed mixed convection in stagnation flows of micropolar 
fluids over vertical surfaces with non-uniform surface heat flux. Yih[7] has presented numerically the 
effect of heat source/sink on steady two- dimensional laminar MHD mixed convection owing to the 
stagnation flow against a vertical permeable flat plate with linear wall temperature in a fluid 
saturated porous medium. Wu et al.[8] have analyzed the stagnation point flow in porous media and 
presented non-linear exact and asymptotic solutions. Abdelkhalek[9] has discussed the skin friction in 
the MHD mixed convection stagnation point with mass transfer.  Kumaran et al.[10] have employed a 
new implicit perturbation scheme to obtain approximate solution to stagnation point flow in porous 
media. Attia[11] has discussed the stagnation point flow and heat transfer of a micropolar fluid with 
uniform suction or blowing. Bachok et al.[12] have analyzed the MHD stagnation point flow of a 
micropolar fluid with prescribed wall heat flux. Singh et al.[13] have discussed the effects of 
volumetric heat generation/absorption on mixed convection stagnation point flow on an iso-thermal 
vertical plate in porous media. Dubey at el.[14] have studied the mixed convection of non-Newtonian 
fluids through porous medium along a heated vertical flat plate with magnetic. Recently, the mixed 
convection boundary layer flow past a vertical plate in porous medium with viscous dissipation and 
variable permeability has studied by Singh [15]. Fan et al.[16] have investigated the mixed convection 
heat transfer in horizontal channel filled with nanofluids. 
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The objective of the present study is to investigate the MHD mixed convection stagnation point 
flow and heat transfer in a porous medium in presence of a transverse uniform magnetic field.  It is 
necessary to study the free convection effects on the flow through porous medium and to estimate its 
effect on the heat transfer which is one of the objectives of the present study.  A few problems have 
been solved on buoyancy assisting flow with constant wall heat flux i.e. linear variation of wall 
temperature. The above cases referring Abdelkhalek [9] allowing the flow through a porous medium 
with an additional constraint has been considered. 
MATHEMATICAL FORMULATION 

Consider two-dimensional steady, laminar, hydromagnetic, mixed convection stagnation point 
flow impinging on a heated vertical semi-infinite permeable surface. The fluid is assumed Newtonian, 
viscous, electrically conducting and generates or absorbs heat at uniform rate. The y-axis is taken 
along the plate and the x-axis is normal to it. A uniform magnetic field is applied in the x-direction 
causing a flow resistive force in the y-direction. When the electrical conductivity is large i.e. for large 
magnetic Reynolds number, the diffusion of the magnetic field takes place in a narrow zone called the 
magnetic boundary layer and is of the same size as that of viscous and thermal boundary layers. In 
this case boundary layer equations for incompressible flow, for velocity and magnetic field must be 
solved simultaneously. When the electrical conductivity of the fluid is small i.e. for small magnetic 
Reynolds number, the thickness of the magnetic boundary layer is very large. In this case the flow 
direction component of the magnetic interaction of the corresponding Joule heating is only a function 
of the transverse magnetic field and the local velocity in the flow direction. Changes in the transverse 
magnetic field component and pressure across the boundary layer are negligible. The induced 
magnetic field is neglected in comparison with the applied magnetic field, which is taken in the 
transverse direction. Moreover, it is the transverse component of the magnetic field which affects the 
motion appreciably. The magnetic Reynolds number is assumed to be small, so that the induced 
magnetic field will be neglected. The free stream is moving with a uniform velocity U∞ and is at a 
constant temperature T∞. The permeable plate or surface is subjected to heat flux qw(x) and uniform 
suction or blowing. Under these conditions and taking into account the Boussinesq and the boundary 
layer approximation, the system of continuity, momentum and energy equations for a Darcyan viscous 
flow can be written as: 
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It should be noted that in writing equations (1)-(3), the magnetic Reynolds number is assumed 
small so that the induced magnetic field is neglected. Also, the Hall effect of magnetohyrdodynamics, 
Joulean heating and the viscous dissipation are neglected. The heat generation or absorption term 
(last term of equation (3)) is assumed to vary linearly with the difference of the fluid temperature in 
the boundary layer and the ambient temperature.                                              

The boundary conditions are 
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Equations (2) and (3) are reduced to ordinary differential 
equations by the similarity transformation technique, which 
requires the introduction of the stream function ψ  through the 
relations  

           xy vu ψψ −== ,    (5) 

In order to transform the partial differential equations into 
ordinary differential equations we introduced a new set of 
independent and dependent variables defined by  
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Equations (2) and (3) now reduced to the following coupled 
ordinary differential equations  
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Diagram 1.  Flow diagram 
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The appropriate flat plate, free convection boundary conditions are also transformed into the form 
    1,0,:0 −=′=′== θη fff w ;     0,0: →→′∞→ θη f            (9) 

In the above equations, primes denote differentiation with respect to η , αυ /Pr =  is the 

Prandtl number, )/(2
0 ρσ bBM =  is the magnetic parameter, υ/bKK p =  is the permeability 

parameter,  υ/Re 2bxx =  is the local Reynolds number, )/(bxUm ∞= , )/(Re 22
fxwx KbqgGr β=  

is the local Grashoff number, )/(0 pCbQ ρφ =  is the heat generation or absorption coefficient, 

2/5)/(Re xxGr=γ  is the buoyancy parameter and bvfw υ/0=   is the suction parameter.  
The resulting differential equations contain arbitrary parameters, the Prandtl number Pr, the 

magnetic parameter M, the porosity parameter Kp and the buoyancy parameterγ .  Bhatanagar and 
Palekar[17] the solutions of the resulting semi-infinite domain, nonlinear equations are accomplished 
with a three part series method. The series for velocity and temperature are given below: 
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The employed series, equation (10), contains term 0k  that satisfies the boundary conditions and 
differential equations at infinity, the second term satisfies the boundary conditions at zero and is the 
solution to the initial homogeneous differential equation and the additional terms that are utilized to 
obtain increased numerical accuracy. This accuracy is limited by the number of terms that will not 
initiate divergence of the numerical results. 

The corresponding boundary conditions are  

1 2 30 : , 0, 0wf f f fη = = = = , 1 2 30, 0 , 0f f f′ ′ ′= = =   1 2 31, 0, 0θ θ θ′ ′ ′= − = =  

 0,0,0: 321 →′→′→′∞→ fffη  ,  0,0,0 321 →→→ θθθ         (12) 
The temperature representation i.e. equation (11) along with equation (10) and the associated 

boundary conditions (12) contain an undetermined parameter ε  which helps in the collection of terms 
for each set of the resulting differential equations. Substituting the series given in equations (10) and 
(11) in equations (7) and (8) respectively and equating the like powers of ε , we get the following 
equations. 
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Solutions of the above equations are given by 
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Substituting equations (19)-(24) into equations (10) and (11), we can get the required 
representation for f and θ .The constant 0k  is determined by satisfying the boundary condition f(0) 
and is a function of Pr and M. Getting the velocity and the temperature expression, we can calculate 
the skin friction and the rate of heat transfer in terms of Nusselt number. 
RESULTS AND DISCUSSION 

The steady two dimensional MHD mixed convection stagnation point flow past a heated vertical 
semi-infinite permeable surface embedded in a porous medium is carried out for different pertinent 
parameters. The main aim of the discussion is to bring out the effect of buoyancy assisting parameter 
(z) and linear non-uniform wall heat flux parameter (n) in the presence of uniform porous matrix and 
uniform magnetic field inducing a flow resistive force in the y-direction. Further, the effect of 
buoyancy parameter is also to be investigated.   

  
Fig-1 Effect of M & Kp on non-dimensional wall 

velocity gradient when Pr=0.7, fw=0.0, k =1.3592 
and η=0.0 

Fig-2 Effect of M & Kp on non-dimensional wall 
temperature gradient when Pr=0.7, fw=0.0, k 

=1.3592,φ=0.0 and η=0.0 
Figs.1 and 2 depict the effects of buoyancy 

parameter (γ ) and magnetic parameter (M) on the 

non-dimensional surface velocity gradient )0(f ′′  
and non-dimensional wall temperature gradient 

)0(θ ′−  respectively with and without porous 
matrix. As magnetic parameter increases, the 
surface velocity gradient as well as the wall 
temperature gradient decreases. In absence of 
magnetic field and porous matrix (M=0.0 and 
Kp=100), a sudden rise in the surface velocity 
gradient and the wall temperature gradient is 
marked (Curve-VI of fig.1 and Curve-V of fig.2).  In 
absence of porous matrix, an increase in magnetic 
field leads to decrease the velocity gradient as 
well as the wall temperature gradient which is in 
good agreement with Abdelkhalek [9](Table-1). It 
is concluded that the imposed magnetic field 

reduces the velocity field as well as temperature field. Due to onset of free convection current and an 
increasing value of buoyancy parameter for buoyancy assisting flow, the surface velocity gradient and 
wall temperature gradient increases which means velocity and temperature distribution decreases. 
This may be attributed to the cooling of the plate. From the figure-2 it is clear that an increase in 
γ (increase in xGr ), leads to an increase in the temperature gradient( )0(θ ′− ) at the plate.  

Fig.2(a) shows the effect of buoyancy parameter (γ ) and magnetic parameter (M) on the non-

dimensional wall temperature gradient )0(θ ′−  with and without porous matrix. It is marked that for 
larger value of the buoyancy parameter, the change in wall temperature gradient follows the same 
trend as that of smaller value in fig.2. 

Table-1 
 Present results Abdelkhalek[13] 

M f"(0) -θ'(0) f"(0) -θ'(0) 
0 0.05548 0.10019 0.14707 0.10362 
3 0.03946 0.10004 0.04799 0.10010 
5 0.03438 0.10002 0.03943 0.10004  

Table-2 
 Present results Abdelkhalek[13] 

Pr f"(0) -θ'(0) f"(0) -θ'(0) 
0.70 0.03946 0.10004 0.04799 0.10010 

100.00 0.00001 0.10000 0.00001 0.10000  

 
Fig-2(a) Effect of M & Kp on non-dimensional wall 

temperature gradient when Pr=0.7, fw=0.0, k 
=1.3592,φ=0.0 and η=0.0 
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Figs.3 and 4 illustrates the various values of the Prandtl number (Pr) on the non-dimensional 
wall velocity gradient and non-dimensional wall temperature gradient profiles respectively in 
presence and absence of porous matrix. An increase in Prandtl number reduces the thermal boundary 
layer thickness along the plate. This gives a reduction in the fluid temperature. This trend is due to 
the fluid with higher viscosity and this causes a reduction in shear stress. Increase in the buoyancy 
parameter (γ ) increases the skin-friction and Nusselt number for buoyancy assisting flows (z =1). In 
absence of porous matrix (Kp=100), increase in Prandtl number decreases both surface velocity 
gradient and wall temperature gradient which is good agreement with the result obtained by 
Abdelkhalek [9]( Table-2). It is interesting to note from the curves VI and VII of fig.3 that presence of 
porous matrix is found to be ineffective to modify the velocity gradient in case of high Prandtl 
number fluid i.e. the fluid with low thermal diffusivity. 

  
Fig-3 Effect of Pr & Kp on non-dimensional wall 

velocity gradient when M=3.0, fw=0.0, k 
=1.3592,φ=3.0 and η=0.0 

Fig-4 Effect of Pr & Kp on non-dimensional wall 
temperature gradient when M= 3.0, fw=0.0, k 

=1.3592,φ=0.0 and η=0.0 
Curves for Kp =100 and Kp =1000 and more coincide and hence we treat high value of Kp as 

absence of porous matrix (Curves VII & IX). 

  
Fig-5 Effect of Kp on non-dimensional wall 

velocity gradient when Pr = 0.7, M= 3.0, fw=0.0, k 
=1.3592 and η=0.0 

Fig-6 Effect of Kp on non-dimensional wall 
temperature gradient when Pr = 0.7, M= 3.0, 

fw=0.0, k =1.3592,φ=0.0 and η=0.0 
Figs.5 and 6 show the effect of permeability parameter (Kp) on the dimensionless surface 

velocity gradient and dimensionless wall temperature gradient respectively. It is observed that in 
absence of porous matrix, both surface velocity gradient and wall temperature gradient increase. 
Which indicates greater shearing stress is experienced on the surface of the wall. 

Figs.7 and 8 depict the effect of suction or blowing parameter ( wf ) on the dimensionless 
surface velocity gradient and dimensionless wall temperature gradient respectively in presence and in 
absence of porous matrix. It should be noted here that positive value of wf  indicates fluid suction at 
the surface while negative values of wf  correspond to fluid blowing or injection at the surface. The 
effect of suction is to make the velocity and temperature distribution more uniform within the 
boundary layer. Imposition of fluid suction at the surface has a tendency to reduce both the 
hydrodynamic and thermal thickness of the boundary layer where viscous effects dominate. This 
results in decreasing the surface velocity gradient and increasing surface temperature gradient in 
presence of porous matrix. Also the same effect has been occurred for fluid blowing at the surface in 
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presence of porous matrix. This result of ours is in good agreement with the device of boundary layer 
control by applying suction on the moving surface. So in the present problem presence of porous 
matrix suggest a controlling device for reducing boundary-layer thickness. 

  
Fig-7 Effect of fw & Kp on non-dimensional wall 

velocity gradient when Pr = 0.7, M= 3.0, fw=0.0, k 
=1.3592 and η=0.0 

Fig-8 Effect of fw & Kp on non-dimensional wall 
temperature gradient when Pr = 0.7, M= 3.0, 

fw=0.0, k =1.3592,φ=0.0 and η=0.0 
Further in case of blowing the same effect is observed in the presence of porous matrix 

suggesting that boundary-layer effect can be controlled by embedding the moving surface in a porous 
matrix. But in absence of porous matrix (Kp=100), the fluid suction and the fluid blowing enhance the 
surface velocity gradient. On the other hand, in absence of porous matrix (Kp=100), the fluid suction  
enhances the surface temperature gradient at all points (Curve-VII of fig.8) where as fluid blowing 
reduces the surface temperature gradient up to certain range of  buoyancy parameter and then 
increases(Curve-VIII of fig.8). On careful observation, the curve VIII exhibits the initial fall and rise in 
temperature gradient due to the presence of suction and high value of permeability. Further, it is to 
note that presence of injection with high permeability accelerates the wall temperature gradient. 
The above facts reveal that suction with low buoyancy effect (i.e. small value of isγ ) is found to be 
counterproductive for enhancing the wall temperature gradient. The high value of buoyancy effect is 
beneficial for higher temperature gradient. Hence, buoyancy parameter has a dual role in modifying 
the temperature gradient in the presence of suction. 

  
Fig-9 Effect of φ & Kp on non-dimensional wall 

velocity gradient when Pr = 0.7, M= 3.0, fw=0.0, k 
=1.3592 and η=0.0 

Fig-10 Effect of φ & Kp on Nusselt number when 
Pr = 0.7, M= 3.0, fw=0.0, k =1.3592 and η=0.0 

Figs.9 and 10 illustrate the effect of 
heat generation or absorption coefficient (φ ) 
on both non-dimensional surface velocity 
gradient and Nusselt number respectively with 
or without porous matrix. It should be noted 
that positive value of φ  means heat 
generation (source) and negative value of φ  means heat absorption (sink). In presence of porous 
matrix decrease in heat generation or absorption coefficient decreases the non-dimensional surface 
velocity gradient and increases the Nusselt number for buoyancy assisting flow. Also, in absence of 
porous matrix, decrease in heat generation or absorption coefficient decreases the non-dimensional 
surface velocity gradient and increases the Nusselt number which is an excellent agreement with the 

Table-3 
 Present results Abdelkhalek[13] 
Φ f"(0) 1/θ(0) f"(0) 1/θ(0) 

-0.2 0.03333 10.84475 0.04025 10.85369 
0.2 0.05085 7.84438 0.06175 7.89531 
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result obtained by Abdelkhalek [9](Table-3). The change in γ  produces change(both 
decrease/increase) in buoyancy effect in the presence of heat source causing the rise/fall in velocity 
gradient whereas change in φ  fails to affect rate of heat transfer γ  wise variation but addition or 
deletion of heat energy varies with the strength of heat source/sink. 
CONCLUSIONS 

A theoretical study of steady two dimensional laminar MHD mixed convection stagnation point 
flow and heat transfer against a heated vertical semi-infinite permeable surface in a porous medium 
has been presented. Some of the important findings of the study are given below. 

 In presence of porous matrix the imposed magnetic field reduces the velocity field as well as the 
temperature field. 

 An increase in Prandtl number reduces the thermal boundary layer along the plate. 
 Due to the presence of porous matrix, both surface velocity gradient and wall temperature 

gradient decrease.  
 The effect of fluid suction and fluid blowing is to reduce the surface velocity gradient and to 

enhance the wall temperature gradient respectively in presence of porous matrix. 
 In presence of porous matrix decrease in heat generation or absorption coefficient decreases the 

non-dimensional surface velocity gradient and increases the Nusselt number. 
Nomenclature 
x, y Coordinate axes 
u, v Velocity components in the x and y directions 
n, a  Constants 
b Characteristic time or time rate constant  
B0 The magnetic induction 
Cp The specific heat at constant pressure 

0v  The suction or injection velocity 
fw The wall suction parameter 
g The acceleration and z is a parameter such that z =1 
denotes buoyancy assisting  ∞> TTw  and z =-1 

corresponds to buoyancy opposing  ∞< TTw  
Grx The local Grashoff number 
Kf The fluid thermal conductivity 
M The Hartmann number 
Pr The Prandtl number 
Q0 The dimensional heat generation or absorption 
coefficient 

Rex The local Reynolds number 
T Temperature of the fluid 

∞T  Temperature of the fluid far away from the plate 
Tw Wall temperature 
U Non-dimensional velocity component 
Greek letters 
α  The thermal diffusivity 
β  The coefficient of thermal expansion 
υ  The kinematic viscosity 
ρ  The fluid density 

φ  The dimensionless heat generation or absorption 
coefficient 
σ  The fluid electrical conductivity 
Subscripts 
w Condition on the wall 
∞  Free-stream condition 
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