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Abstract: The gear couplings can compensate misalignments between two connected shafts. Main
components of gear coupling are the hub and the sleeve. They create a special gearing having intersecting
axes, when angular misalignment is occurred. Because of the crowned tooth surface of the hub the meshin,
is point contact in any instant. In this pa})er the position of contact points and the curvatures are determine
using mathematical models of tooth surfaces. The load carrying capacity of gear coupling is restricted by the
contact stress, which will be determined based on the Hertz theory.
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1. INTRODUCTION

Gear couplings are used to connect end of shafts and to compensate the misalignments. Most
important components of them are the sleeve and the hub. The sleeve is an internal spur gear and
the hub is an external gear which has crowned teeth. The two toothed components compose a
special gear pair, wherein both number of teeth are the same. The gear coupling is able to
compensate the misalignment of the coupled shafts by the tooth crowning and backlash. Using a
single hub and sleeve, the effect of angular misalignment may be eliminated. In the practice,
generally two hub-sleeve pairs are built up as it is
shown in Figure 1. In this case the compensation of
the offset misalignment is possible in addition to the
angular misalignment.

A typical failure mode of the gear couplings is the
surface fatigue, so called pitting formation, which
can be prevented by limiting the contact stress. Due
to the crowned surface of the hub, the surfaces of Figure 1. Gear coupling (a) & the hub with
gear coupling having angular misalignment contact crowned teeth (b)

to each other in a point at any moment. To determine the contact stress need to know the location
of the current contact point on the surface and the principal curvatures in that point. In this paper
the mathematical models of tooth surfaces are prepared and the position of the contact points is
determined for the gear coupling having angular misalignment operation. The principal
curvatures and the principal directions of curvature are determined according to the involute tooth
geometry for the surface of the sleeve, and by the method developed with the assistance of the
envelope surface for the crowned surface of the hub. The load capacity of the coupling is based on
the Hertz theory and it is determined by comparing the calculated and permissible contact stress.
2. MATHEMATICAL MODELS FOR TOOTH SURFACES

2.1. Tooth surface of the hub

The crowned surface of hub is generally prepared by hobbing. Mathematical modeling of the
production is made more solutions [3, 4, 5], which describe the surface with sufficient precision
and the relation to one another shows minimal differences.
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In this study, the tool surface is a straight circular cone
(Figure 2), which has translational movement tangent to the
pitch circle of hub with constant velocity vo = rien. Here 71 is
the radius of pitch circle on tooth surface of hub and @ is the
angular velocity of the hub.

The position vector of tool surface at point P is the following
in the coordinate system So (Oov, xo, yo, zo0):

usina

r,=| (R—ucosa)cosy |
(R—ucosa)siny Figure 2. Conical tool surface

In equation (1) u and y are the parameters of tool surface, « is the profile angle and R is the

crowning parameter. The interpretation of the notations is shown in Figure 2. Unit vectors for

surface normal and two principal directions are indicated in the figure. They are described in

coordinate system of tool surface by the following equations:

. . . T
n,=[cosa sinacosy sinasiny| ’ @)
e, =[sin@ —cosacosy —cosasiny] 3)
7
e, =[0 siny —cosy/]T' @)

Here and later the superscript T means the transpose for
vectors.

To determine the crowned tooth surface of the hub, the tool
surface have to be described in coordinate system Si1 (O1, x1, y1,
z1) which is rigidly connected to the hub. The transformation is
based on Figure 3.

The moving tool surface provides a set of surface in system S,

which is characterized by the following equation:
usina+nep+s/2
n=M,|(R-ucosa)cosy —R+r |/ )

Figure 3. Coordinate systems

(R—ucosa)siny
where Mo is the transition matrix from system So to system Si, s is the tooth thickness of the
crowned teeth, measured on the pitch circle in the central plane. The matrix is defined by the
turning angle of the hub ¢.

cosp —sing 0
M, =|sing cosp O (6)
0 0 1

The equation of meshing is given by the following form:
Vo -1y =0. @)
Here v is the relative velocity between the hub and the tool surface, no is the unit normal vector in
the contact point. Solving vector equation (7) a relationship is obtained between surface
parameters (1 and ) and the motion parameter ¢, according to equation (8):
¢=_l( “_ R 1-cosy +£j. (8)

rn\sina tanacosy 2

Equations (5) and (8) together provide the crowned tooth surface. Details of derivation are found
in reference [5]. The unit normal of the crowned tooth surface can be defined in coordinate system
S1 as follows:

n =M, n, )
2.2. Tooth surface of the sleeve
The sleeve is an internal spur gear which has involute tooth profile (see Figure 4). The position

vector and unit normal vector of tooth surface are determined by the following equations:
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r,[=sin($-7)+Jcos(9-7)]
=7 [cos(&—r])+8$in(l9—r7)] !
t
n, =[cos(9—n) sin(9-7) O]T, (11)
where 1 is the base circle radius, ¢ and t are the parameters of tooth surface, and 7 is the angle of
tooth space measured on the base circle.

(10)
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Figure 4. Internal tooth surface of the sleeve Figure 5. Gear coupling with angular misalignment

2.3. Determination of the contact points

The gear couplings having angular misalignment compose a special gear pair with intersecting
axes (Figure 5). The shaft angle of the drive equals the angle of misalignment . The number of
teeth on the hub equal to the number of teeth on the sleeve. The crowned tooth surface of the hub
and the involute cylindrical tooth surface of the sleeve are in point contact in any instant.

The contact points are determined and the meshing is analyzed in a suitably chosen coordinate
system. The contact points are the common points of both tooth surfaces therefore the position
vectors are the same in these points. In addition the two tooth surfaces have common tangent
plane in the contact points thus the normal vectors coincide to each other.

2.4. Coordinate systems AV A

We set up four coordinate systems. Si (O, x1, . >

y, z1) and S2 (O, x2, y2, z2) are moving

coordinate systems and they are rigidly 2 &

connected to the hub (gear 1) and the sleeve

(gear 2), respectively. S¢ (O, x, ys, zi) and Sa (O, . = - X 24 — > Xt
Xa, la, Za) are stationary coordinate systems

fixed to the frame. St is the global system and a) ™ b) -
Sa is an auxiliary ones. If there is no angular Figure 6. Applied coordinate systems

misalignment (y = 0) Sa coincides with St (Figure 5). All of the coordinate systems have a common
origin O. S1 rotates in Sa around axis za which coincides with zi. The turning angle ¢: is measured
between axes xa and x1 (Figure 6). When ¢1 = 0 S1 coincides with Sa. Similarly, S: rotates in St
around axis zt which coincides with z2. The turning angle ¢2 is measured between axes xt and x2
(see Figure 6). When ¢2 = 0 S2 coincides with Si. The relationships of transformation among
coordinate systems and the transition matrices are described in detail in reference [6].

2.5. Contact points of the tooth surfaces

The contact point between the tooth surfaces of the hub and the sleeve is a point in the coordinate
system St, at which the position vectors and the surface unit normals coincide with another. Thus

r](pl)(u,l//,q)l)=r](p2)(19,t,¢2), (12)
n;})(u,y/,(ol)=n}2)(8,(o2) ‘ (13)
Vector equation (12) yields three scalar equations, but equation (13) yields only two independent
scalar equations because of the both surface normals are unit vector.

|n(j})|:|n(/2)|:1. (14)
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The tooth surfaces of the hub and the sleeve are represented in coordinate systems S1 and Sz by the
equations (5) and (10), respectively. To obtain equations (12) and (13) the position vectors and
normal vectors have to be transformed into St fixed coordinate system. The details can be found in
reference [6].

Equation system given by equations (12) and (13) contains five nonlinear equations. Solving is
possible by computer in iterative way using numerical solution method.

2.6. Determination of principal curvatures

Tooth surfaces of the gears are commonly produced by generating, using the principle of surface
enveloping. These surfaces are usually sufficiently complicated to determine the curvatures in a
conventional manner, by the methods of differential geometry. Litvin [1] proposed an effective
solution to solve the problem. The method is that, the curvature characteristics of the enveloped
tooth surface are determined by the given curvature characteristics of the tool surface (principal
curvatures, principal directions) and the motion parameters.

2.7. Principal curvatures of the hub

The principal curvatures and principal directions for crowned tooth surfaces of the hub are
determined in accordance with the recommendation of reference [1] using the valid correlations
for enveloping surfaces. The first step is to be produced the principal curvatures and the principal
directions on the tool surface. The tooth surface of the hub is generated by a conical tool surface
(Figure 2). The principal directions are plotted in Figure 2. One of the principal directions is
located along the cone generatrix, the other is in the tangent plane perpendicular to the first one.
The unit vectors of principal directions are described by the equations (3) and (4). Principal
curvatures for the indicated directions are given by the following formulas:

ko1 =0, (15)
__ sina ) 16
ko R+ucosa (16)

In equation (16) the negative sign indicates that the center of curvature lies on the opposite
direction of the surface normal.

Knowing the principal curvatures and principal directions of the tool surface and using the motion
parameters, the following equations can be produced according to [1]:

o-=larctan — —246 ’ (17)
2 GG _(k01 —k02)c3

2, 2 2 a2 _
k., =%{ko1 ko, + o t+a JL7a (koy —koy)es J, (18)
¢ c;c0820

G +a
@ " (19)

n Equation (17) determines the angle o between the first principal

en direction of the tool surface en and the first principal direction of the
@i workpiece tooth surface e, which is interpreted according to Figure

7. Equations (18) and (19) give the sought principal curvatures of

kyy =k + kg, +

e ey tooth surface. The following auxiliary variables are used:
P > ¢ =—koyv + ("o X Wy, )e01 ’ (20)
Figure 7. Principal directions c, = —ky,v, + ( n, x o, )e02 , (21)

of curvatures
¢ =~ky (v )2 ~ ke (v, )2 +(ny x @y, )vy, + 1 (0, xv,). (22)

In these expressions v1 and v2 are the components of relative velocity divided to the principal

directions of the tool surface. am is the relative angular velocity vector. The following terms are
used to define them:

Vi =V01€01/ (23)
V) =V1€02s (24)
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0, =-0,=[0 0 w]T' (25)
Unit vectors of the principal direction for the tooth surface from Figure 7 are the following:
e, =e,Ccosc +e,sinc, (26)
e, =—e,sinc +ey,coso . (27)
Considering that these vectors are defined in the coordinate system So they must be transferred to
the own coordinate system of the hub Si. After transformation, the principal directions of the tool
surface are amended, but the relative position of them does not change relative to the principal
direction of the tooth surface. Accordingly, the unit vectors of principal directions in the system Si
as follows:

e =M e, s (28)
W _
e, =M e, , (29)
(1) (1) (1) o3
= + mn
el = ey coso + ey sino (30)
el) =—e!)sino +e) coso 31)

The matrix of transformation Mo is given by equation (6).
2.8. Principal curvatures of the sleeve
Principal curvatures of involute cylindrical surface of the sleeve are known from involute
geometry. One of the principal directions coincides with the generatrix and the corresponding
curvature is

k21=0. (32)
The other principal direction is tangent to the involute profile and the curvature in this plane
equals the profile curvature. Based on Figure 4, we can write:

kz=-1/ro 9. (33)

The unit vectors of principal directions are:
e, =[0 0 1], (34)
e, =[sin($-7) -cos(9-7) 0]T- (35)

2.9. Computing of the contact stress

The verification of the load capacity for tooth surfaces is carried out based on the Hertz theory. The
tooth surfaces contact to each other in a point theoretically, but under load they are pressed, and
the contact is formed along an elliptical pattern. The contact stress is determined by the following
equation in accordance with the recommendation [2]:

_3EK, (36)
Ou 2 wrab

where F» is the normal force, K4 is the application factor, 2 and b are the two semi-axes of the
contact ellipse.

The application factor depends on the type of the driving and driven machine. Its value should be
selected based on the coupling manufacturer's recommendations.

Determining the semi-axes of the contact ellipse, the following relationships are used:

a:a*3§ £, , and b:b*3§F_n (37)
2E 3k 2E Sk

where a* and b* are the specific semi-axes of contact ellipse, E: is the reduced modulus of elasticity,
2k is the sum of principal curvature.

The specific semi-axes can be determined from the diagram of Figure 8 as a function of curvature
relation. In the Figure 8, @ is an auxiliary parameter depends on ratio of curvature F(k). The value
of #must be defined in degrees:

6 = arccos(F(k)). (38)
The ratio of curvature depends on the principal curvatures and the angle o1z between the first
principal directions of the two bodies:
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\/(kll - k12 )2 + 2(k11 - klz )(k21 - kzz )COS 20-12 + (k21 - kzz )2 )

F(k)= 39
(k) e (39)
To calculate the parameters E: and 2k in equations (37) and (39) the following formulas are used:
10 \ 1,0 Lzl_vlz_i_l_vz2 , (40)
° \ 0.9 E, E| E,
8 0.8
; \ o Zk=k,+k,+k, +k,. (41)
T o N e | — ‘(’)’(’ T” In equation (40) E: and E: are the modulus of
a*| s ,5 d
. 1| 0.4 elasticity and v and 12 are the Poisson's ratio of
X ~ " . contact bodies. The principal curvatures using in
2 | O’ . . . .
| i equation was determined in section 4.
/ —— quation (41 det d tion 4
% 5 10 15 20 25 30 35 40 45 50 55 60" The permissible contact stress according to [2] is:
o _ O
Figure 8. Specific semi-axes of contact ellipse Onp = ’ (42)

Su
where onn is the rated contact strength, Zc is the sliding coefficient, and s is the safety factor. onn
depends on the load cycles and it is equal to the endurance limit or the life strength. Zc depends on
the sliding velocity and we can compute it using the recommendation of reference [2]. The safety
factor should be chosen depending on the application, the minimum suggested value of stmin = 1.
The load carrying capacity of coupling is determined by the comparison of the computed and the
allowed contact stress:

Oy <O, (43)
Assuming equality in formula (43) a transcendental equation is obtained in F., which can be solved
using numerical methods. The torque can be transmitted by the coupling given by the following
equation:

T=Z,F, (44)
where Z, is the contact ratio factor, v is the base circle radius of the hub tooth surface. Theoretical
value of Z, equals 2.

3. CONCLUSION

To prevent the surface fatigue on tooth surface of gear couplings the contact stress has to be
limited. To determine the contact stress, we need to know the equations of tooth surfaces, the
relationships of meshing, and the curvatures at the contact points. The tooth surfaces were
prepared in accordance with the methods of manufacture. In the analysis of the operation, to find
the points of contact we have had a non-linear system of equations having five equations. In the
calculation of the load carrying capacity of gear coupling also became necessary the numerical
solution for nonlinear equations. Solving the nonlinear equations, the possibilities of Mathcad
program were used.
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