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Abstract: The main objective of this Faper is to present an easly feasiblemethod for solving the steady-state
thermoelastic problem of functionally graded components using commercial finite element codes. In our
example a radially graded spherical body is considered which is subjected tospherically symmetric
mechanical and thermal loads.The material properties of the functionally graded material depend on the
radial coordinate and the temperature field, the used FEM software is the ABAQUS CAE.The multilayered
approach is used to get the functions of the displacement and temperature field, the normal stresses and
equivalent stresses.
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1. INTRODUCTION

Pure metals are used less in engineering applications because of the demand of conflicting
property requirement. For example, an application may require a material that is hard as well as
ductile, there is no such material existing in nature. In order to solve this problem, metal are
combined with other metals or non-metals in order to improve the properties of material. The
concept of the functionally graded materials (FGMs) was first considered in Japan in 1984 during a
hypersonic spaceplane project. The body of the spaceplane would be exposed to very high
temperature environment (about 2000K), with a temperature gradient of approximately 1000K,
between inside and outside of the spaceplane. At that time there was no uniform material able to
endure such conditions. The researchers wanted to create a material by gradually changing
(grading) the material composition in order to improve both the thermal resistance and the
mechanical properties [1], [2]. The smooth transitions between the constituent materials(and their
properties) eliminate the potential cracking and debonding what is one of the advantages over the
other modern material group, the composites. In recent years this concept has become more
popular in Europe.

From the point of view of fabrication methods the FGM structural components are divided into
two groups: surface coating and bulk FGMs [1]. This paper deals with the modelling of the bulk
functionally graded parts. Bulk FGMsare produced using powder metallurgy technique,
centrifugal casting method, solid freeform (SFF) technology etc. [3]. To produce bulk functionally
graded materials the laser based SFF methods are utilized mostly (laser cladding based method,
Selective Laser Sintering, 3-D Printing and Selective Laser Melting). Solid freeform is an additive
manufacturing process that offers lots of advantages for example higher speed of production, less
energy intensive, maximum material utilization, ability to produce complex shapes and design
freedom as parts are produced directly from CAD data [4]. By this method after the processing of
the CAD files the component is built layer by layer (an example can be seen in Fig. 1). This means,
that in many cases the multilayered approach can be accurate enough to deal with the mechanical
analysis of such components.
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In the past few years significant amount of reviews dealt
with the mechanics of the fuctionally graded materials
from various aspects. The analytical solution for the
thermomechanical problems of the FGMs is very
complicated but we can find a few of them in some

papers [5-11] in which the material parameters depend
only on the spatial position. The derivation of closed
form solutions for the displacement field and thermal
stresses of functionally graded components with
temperature- and spatial coordinate dependent properties is very hard even by some simple
structural components (such as disks or spherical bodies), so the finite element simulation seems to

Figure 1. Fabrication possibility of FGMs
(SFFmethod)

be an effective way to deal with this kind of problems. Furthermore we want to look for a method
which can be executed without any special software enviroment. This means that we want to
avoid user subroutines (where special compilers are needed) and other special tools and only use
the preprocessor of the chosen FE code: the ABAQUS CAE.
We will consider aspherical pressure vesselwithspherically symmetric thermal and mechanical
load. There are first kind thermal boundary conditions prescribed on the inner (tinr) and on the
outer (fouter) boundary surfaces, the constant pressure exerted on the inner and outer surfaces are
denoted by pime and pour respectively. The material parameters are depend on the radial
coordinate (r) and temperature field (T(r)). The functionally graded spherical vessel is modelled as
a multilayered body with constant (from the point of view of the spatial- dependency),
temperature-dependent material properties. The number of the layers is denoted by n. Our aim is
to determine the displacement field (u(r)), radial stress (o) and the tangential stresses (c¢=03).
2. THE MATERIAL PROPERTIES
Since functionally graded components are most commonly used in high temperature environment
where significant changes in mechanical properties of the constituent materials are to be expected,
it is essential to take into consideration this temperature-dependency for accurate prediction of the
mechanical response. Thus, the effective Young’s modulus Ef, Poisson’s ratio vs, thermal expansion
coefficient ajand thermal conductivity Armare assumed to be temperature dependent.Several
micromechanics models have been developed over the years to infer the effective properties of
FGMs. The Mori-Tanaka scheme [12], [2] for estimating the effective moduli is applicable to
regions of the graded microstructure which have a well-defined continuous matrix and a
discontinuous particulate phase. It takes into account the interaction of the elastic fields among
neighboring inclusions. Another method is the self-consistent method [2] which assumes that each
reinforcement inclusion is embedded in a continuum material and does not distinguish between
matrix and reinforcement phases. But in many cases the material parameters can be expressed as a
nonlinear functions of the temperature field [13], [2]:

M (T)=F(P,T" +1+PT+PT’+PT’). (1)
In Eq. (1) Meg(T) denotes the function of the considered effective material property (Er, vs, ar or Ay),
Po, P1, P1, Pand Ps are material dependent coefficients of temperature (T [K]). Using this result the
functions of the temperature- and position-dependent functionally graded material properties:

My (1) =[ M (T) = Mo (D [CO] + My (T, (2)
where the C(r) function is CSP""""(r):Z;a,by spherical bodies (this will be used for the further
—a

_2z-h

calculations) and ¢"™(r) p ,by plates, the 1 and 2 indexes denote the metal and ceramic

components, h is the thickness of the considered structural component (for example the thickness
of a plate), z is the thickness coordinate,a and b denote the inner and outer radii of the sphere, and
N is the volume fraction exponent (Fig. 2) of the material.
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Figure 2. The volume fraction of material 1 along the radial coordinate

In our example a stainless steel - silicon nitride FGM will be considered. The material parameters
of this FGM can be seen in Table 1.

Table 1. The material properties of the considered FGM
Material stainless steel (1) silicon nitride (2)

property Prmo | Pmi(103) Pm(107) Pms(1019)  Po  Pa(10%) Pe(107)  Pe(10-1)

(Metr)
A(W/mK) 15.39 -1.264 20.92 -7.223 | 12.723 | -1.032 | 5.466 -7.876
a (1/K) 12.33-10¢| 0.8086 0 0 3.873-10¢ | 0.9095 0 0
E (Pa) 2.01-10"| 0.3079 -6.534 0 3.484-10| -0.307 2.16 -8.946
v () 0.3262 -0.1 3.797 0 0.24 0 0 0

The steps of the modelling method are:

O The first step of the modelling is the creation ofthe segmentedgeometry (as the partitioning of
the functionally graded body). The material properties within the segments (for example by
FGM plates with one dimensional grading: the segments are layers) are temperature dependent,
so the direction of the grading designate the position of the segments, while the volume fraction
exponent and theparameters (especially their change) of the constituent materials and the
desired accuracy of the simulationspecify the geometry (thickness) of the different partitions.

O The second step is the calculation of the material parameters for each segment. In this step first
we determine the temperature-dependent functions of the material properties for each
segments as M(T)=M(r=rmedimn,T), then create these functions in discrete points. The points are
generated by appropriate stepts in the radial coordinate.

O The third step is the creation of the assembled geometric
model. Within the coupled temperature-displacement step
the boundary conditions and loads can be adjusted. Among
the constrains the osculant surfaces of the adjacent
segmentsmust be tied together.

O In the last step we have to create the mesh and choose the
most appropriate element group (from the element types of
the coupled temperature-displacement analysis).

3. MODELLING OF THE PROBLEM

A thick-walled (r/h=5.95) spherical pressure vessel is considered

with dime=1m inner diameter and h=84mm wallthickness, in Figure 3. The modell of the
addition a=0.5m, b=0.584m, time=698K, toue=303K, pinmea=100MPa, multilayered (1n=14) spherical vessel
poue=0MPa, N=3 and three cases with three different layer with the mechanical load (arrows:
numbers were investigated(n1=7, n:=14, n;=28). pinner), the first-kind thermal
The problem is axisymmetric, so a quarter of the spherical Poundary Conditio_n. (squares) and
vessel is modeled. The functionally graded sphere is modelled the boundary conditions (symmetry

as a multilayered body. Due to the radial grading, the layers conditions)
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should beconcentrical hollow spheres with h/n wall thickness.Thelayers have temperature-
dependent material parameters and thematerial properties (M: E, @, A and v) for the different

layers can be calculated by:

R +R

R = fz”l, M(T)=M(r=R 1), i=l.n 3)

mi mi?

The next step is the input of the material parameter-temperature functions for every different
layers using the simpliest method of the preprocessor: tabular input. Maple 15 mathematical
software was used to calculate these couples of values from 25°C to 425°C by the step of 25°C then
it was copied into the material creation module. In the assembly module the previously created
layers can be assemebled by position constrains. The problem can be solved using the coupled
temperature-displacement stepof the ABAQUS CAE. In this case we choose the steady-state option
but there is a transient option too. In the boundary condition module we allow the movement of
the nodal points on the horizontal edge only in X direction, on the vertical edge only in the
Ydirection, furthermore the temperature of the inner and outer boundary surfaces (first-kind
thermal boundary conditions) were entered (Figure 3). In the next step we tie the osculant surfaces
of the adjacent layers (Constraints/Tie module). For the meshing of the model an 8-node, coupled
temperature-displacement, quadrilateral element group was used (CAX8T). The number of
elements and nodes for the three different meshes (Figure 4) are: (350; 1771), (700; 3542) and (2800;
14084).

Figure 4. The investigated meshes(n=7,14 and 28).
The results and their convergence can be seen in Figures 5-7. The result for the temperature field
were accurate enough even by n=7 layers.
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Figure 5. The displacement fields of the functionally graded vessel.
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Figure 6. The normal stressesof the investigated cases.
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Figure 7. The temperature field (n=28).

In Figure 6 we can see that the function of the tangential stresses contains significant oscillations
and the values of the first and last layers have greater error than in the other layers. In order to
reduce these errors it is recommended to copy the results (the stress values, except the last value of
the tangential stresses) of the simulation and fit a curve to these calculated values. For example we
can use the Maple 15 and its curve fitting method (via least squares method) to execute this step. In
the last step we can calculate the equivalent stress and analyze the yield streng of the component,
for example we can use the Mises criteria:

: ©)
In our case there is 9.8% relative error between the maximum values of the equivalent stress values

of the cases (Figure 8):n=28 and n=7, and 3.2% between the results of the cases:n=28 and n=14.
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Figure 8. Building the equivalent stress functions from the approximated curves

4. CONCLUSIONS

This paper presents a finite element modelling technique for functionally graded components via
the example of asteady-state spherically symmetric thermoelastic problem of a functionally graded
spherical pressure vessel which is subjected to mechanical and thermal loads. The body of the
component is modeled as a segmented body with different discretized material properties within
each segments. Three cases were invesigated with three different layer numbers and the equivalent
stresses are presented. In order to solve this problem, the ABAQUS CAE FE software and Maple 15
mathematical softwarewere used.
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