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Abstract: This paper proposes advanced control strategy for a rotary inverted pendulum (RIP). RIP is an
underactuated mechanical system because it has only one control input and two degrees of freedom.
Because of its com%lex nonlinear dynamics, RIP is usually used to test performance of different control
algorithms. First, laboratory electromechanical system representing the full control system is described in
short, followed by the mathematical model for the RIP. Control problem is divided and implemented in two
different steps: swing-up and stabilization routines. Here, a partial feedback linearization procedure and PID
control are suggested for the control of RIP. The effectiveness of the proposed control method is tested in
Matlab Simulinﬁ environment.
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1. INTRODUCTION
Under actuated systems have more degrees of freedom than actuators, [1-3]. A rotational inverted
pendulum, also known as Furuta pendulum, is an example of such a system, [4-7]. Almost all
dynamic systems are nonlinear by its nature, therefore a lot of research is done in the area of
nonlinear control. The aim of this paper is to develop a nonlinear control system for both the
rotational pendulum and actuated arm. First, a description of the Furuta pendulum will be given.
Then, a mathematical model of the system will be derived. The control strategy consists of two
parts, a swing up and a balancing phase. The theory of inverse dynamic control will be used for
the latter. However, the resulting zero dynamics of the actuated arm shows unstable behavior.
Hence, a control feedback law will be extended in order to stabilize the horizontal arm.

2. DYNAMIC EQUATIONS OF ROTARY INVERTED PENDULU

2.1 Description of the system :

In Figure 1 a schematic of Furuta pendulum and real
laboratory model are shown. Inverted pendulum is a
mechanical system with two degrees of freedom, where
angular position of the arm and the pendulum are
denoted as 6 and ¢, respectively. The arm is driven
with a torque, while no torque is applied directly to the
pendulum.

The variables used to define the model of the rotary
inverted pendulum are shown in table below. . >
The laboratory electromechanical system is comprised Figure 1. A schematic of he rotational

of three subsystems: measurement, power and control inverted pendulum and available laboratory
supervision. The first one consists of high resolution model

encoders for measuring arm and pendulum angle positions. The second one provides the power
for DC motor which drives the arm shaft. Embedded compact RIO controller, together with
monitoring PC forms the last and most important part. LabVIEW software is used for
implementing the real time software and supervision.
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Table 1. Description of the parameters used in the modeling of the system

mi,mo mass of the arm and pendulum, respectively
Ri distance of the arm’s pivot point to the pendulum’s pivot point
R» distance of the pendulum’s pivot point to its end (extreme)
2r1, 2r2 total length of the arm, and pendulum respectively
Ja moment of inertia of the arm with respect to its center of mass
Jersdyasd o axial moments of inertia of the pendulum with respect to its center of mass

2.2 Mathematical model of rotary inverted pendulum
Here, the Rodriguez method is proposed for modeling the dynamics of the system where
configuration of the mechanical model can be defined by generalized coordinates qi and q,
representing 6 and ¢, respectively. The equations of motion of the inverted pendulum can be
expressed in a covariant form of Lagrange’s equation of second kind as follows [1,2]:
Y aralia+ Y X Tap pdadp =0y 7=12 )
a=1 a=1p=1
where the coefficients a.,p are the covariant coordinates of the basic metric tensor [a,,]eR*?,
Tus, @, f,y =1,2 presents Christoffel symbols of the first kind, and Qr denote the generalized

gravitational and control forces.
The equations of motion of our system can be rewritten in compact matrix form:
AQ)i+C(q.9)+8(q) =0* 2)

where ¢=(6 )7, A(q)=|:“11 alz}eszz is basic metric tensor, C(q,¢) < R?- vector which takes care of
ar axp

configuration of inverted pendulum system and velocity dependent effects, @¢(q)=-g(g)eR*-
vector of generalized gravitational forces, and @¢=(m 0)" ¢R?- vector of generalized control

forces. Finally, Eq. (2) written in full form becomes:
a,0+a,§+2T,, 0p+T,, " =M 3)
a,6 +a22q'5—1"m€.2 =05 (4)
where are
a, =J,+J, sinz((p)-ngz cos’ (@) +m, R} +m (R —1,)" +m, (R, —r,)" sin’ ()
a,, =—m,R (R, —1,)cos(p) = =K, cos(9), a,, =J ., +my(R, —1,)" =K, )
T, =0.5(m, (R, =1,)" +J,, - J., )sin(2p) = K, sin(2p)
I, =mR (R, —1,)sin(p) = K;sin(p), OF =m,g(R, —1,)sin(p) = K, sin(p)
For simplicity, we introduce physical parameters K, K,, K, K, which are defined as shown above.
3. CONTROLLER DESIGN
In this section a control strategy is developed to stabilize the pendulum in upright position. As
mentioned before, there are two different control problems. The first one is swinging the
pendulum up from down to the upright position. Once the system is close to the desired position,
with a simple change in the controller, it is possible to bring the pendulum in the desired
equilibrium.
3.1. Swing up controller
There are many ways to bring the pendulum to the upper half plane, when |g|<z/2. One of the

most popular is based on energy control [3,4]. The goal of this paper is not to build an accurate
swing up controller, but to bring the pendulum close enough so the stabilizing controller can
stabilize it in the upright position. Hence, the swing up strategy will only be described here in
short.
The equation of motion for the pendulum is:

(ngz +m, (R, —rz)z)(ﬁ—ng(R2 —r)sing+m,a(R, —r,)cosp =0 (6)

where a represents the acceleration of the pendulum’s pivot point. Friction has been neglected. For
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the sake of clarity, let us introduce J, =J,, +m,(R, -1,)’ . The energy of the uncontrolled pendulum

(without the rotating arm) is:
I .
E=2J,¢" +mg(R, —r,)(cosp ~1) )

The energy is defined so that it is zero in upright rest position. Now, it is necessary to understand
how the energy is influenced by the acceleration of the pivot. We can find it by computing the time
derivative of E:

dE . . .
E:Jz(p(p—ng(Rz—r2)¢s1n(p:—m2a(R2—rz)(pcosgo (8)
where Eq. (6) has been used to obtain the last equality. Equation (8) implies that system is simply
an integrator with varying gain. To increase energy the acceleration of the pivot a should be
positive when the quantity ¢cos¢ is negative. With the Lyapunov function v =(E,-E)’/2 and the

control law u(¢) = a(t) = k(E - E, )¢ cos ¢, k = const >0, it follows:

b = —km, (R, — ,)(E, — E)¢ cos p)* 9)
This control law drives the energy towards its desired value E, =0, except when ¢cosp=0.
3.2 Stabilizing controller
Now we can design a controller that stabilizes the pendulum in upright position. For this purpose,
we will use nonlinear control technique known as inverse dynamic control. It is basically a partial
feedback linearization procedure [5], which simplifies the control design. The first step of this
procedure is to calculate ¢ from Eq. (4) and plug it into Eq. (3). After rearranging, Eq. (3) now
reads, [6]:

ﬂ(Qf + Flz.léz ) + [alz ~ Sz j‘/"" 21—12,16."/'7 + lle,lfb2 =M (10)
ap ap
We can see that § has been canceled out in (10). Control input M can be chosen as follows:
=01 1, 0oy 0% a2, T 1)
a, a,
where Mr is new control input. Now, Eq. (3) and (4) become:
g=_20 B, Yot I gr 24 MR 12
X, tan(e) X, sin(@)8~ + X, cos(o) (12)
p=M, (13)

where physical parameters K,,K,,K;,K, are defined in Egs. (5). Because of the cosine term in term
a,, in the denominator of Eq. (11), the control signal is defined in every position of the pendulum
except for the horizontal, i.e. |p|<7/2. To achieve asymptotic stability for the (¢,¢), a PD
controller can be used:

My ==K, 0= K, (14)

The PD controller stabilizes the inverted pendulum for every X, .K,, >0, but does not stabilize the

Pp>
arm. This can be seen by observing the zero dynamics of the system. Substituting ¢ =0, =0 into
Eq. (12), it follows 6 =0= 0 = const .

So, underactuated mechanical systems like inverted pendulum are not fully feedback linearisable,
and control techniques developed for a fully actuated systems cannot be applied here [7]. The new
goal is to improve M, so that asymptotic stability for (go, gb,@,é) can be accomplished. To achieve

this, control feedback law will be extended as follows:

My =-K,,0—K,,¢—Kp,0cos(p)— KDOQ cos(p) + % sin(@) (15)
After substituting Eq. (15) into Eq. (12) and (13), we obtain:
2] K4 ) K4 K4 . Kz : 12
0+EKD€6+ZKP59:—W(KD(/)(DJFKPw(D)—zZsln(@)H (16)
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.. . K, . .
go+KDw(p+pr(p—?‘sm((p):—cos((/J)(KDg6’+KPg6’) (17)
4

Now, we can linearize system described with Eqs. (16)-(17) around equilibrium point
(9, 0, go,(b) =(0,0,0,0) . A controller derived from a linearized system will work for a nonlinear system,

provided region of attraction is not too large. Under this condition, linearization allows us to
neglect nonlinear, quadratic term ¢ in Eq. (16). So, linearization around desired equilibrium point
leads to:

. K . K K K
d+2ag o+l o= Big 5 Dig 4 (18)
K3 D K3 P K3 D¢ K3 Py
¢)+KD¢7¢+ KP(p_Ki ¢):_KD9€_KPH9
4

Choosing the following values for PD parameters:

Kpy=-30; Ky =—12; K, =250; K, =30; (20)

where K, =6.514e-2, K, =9.186e—4, K, =1.428¢-3, and K, =1.837¢-3 are system parameters taken from
the real laboratory model of inverted pendulum, eigenvalues of the linearized system are:

5., =-5.6+9.81; 5y, =—1.67+£281j (21)

Conditions  for  asymptotic e Ptmapmain

stability of linearized system are
fulfilled. Simulation studies are

Position of am
T

performed in Matlab Simulink

8 [rad]

environment to illustrate the
performance of the designed
controller. Figure 2 below shows

results for the change of the A N I O o= 88 8
pendulum and arm angle, With a 18] 1 15 t[ﬁic] 25 3 35 4 a k) 1 15 ‘[Sit] 25 3 =13 4
respect to time. Initial conditions Figure 2. Change of pendulum and arm angle

are (9,6,9.9)=(0,0,-z,0). A change from swing up to stabilizing controller happens when |¢| < /6 .

4. CONCLUSION

In this paper a control algorithm for rotational inverted pendulum is provided. The control
strategy consists of two parts, a swing up controller and stabilizing controller. A stabilization
algorithm is based on partial feedback linearization, which made it possible to compensate some of
nonlinearities of the pendulum. Control feedback law is designed to achieve local asymptotic
stability for both the pendulum and the driven arm. Results have been supported by means of the
computer simulation. For future research, an improvement of the proposed method is to be

considered, based on Lyapunov’s direct method. Also, transfer from simulation to real laboratory
inverted pendulum will be a subject of future investigations.
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