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Abstract: In this paper the authors introduce a sum of singular kernels to well describe the experimental
data concerning the creep and stress relaxation of viscoelastic solids in large time interval. The solution
(concerning the creep) of the respective integral equations describing the stress relaxation is obtained with
the help of resolving kernel represented as a sum of the respective resolving kernels concerning each sum
member. Experimental results for polyisoprene rubber illustrate the applicability of the proposed kernels
sum.

Keywords: viscoelasticity, hereditary theory, singular kernel

1. INTRODUCTION

It is well known that the Boltzmann hereditary theory using integral equations of Volterra [1] can
well describe the creep and stress relaxation of different viscoelastic solids. Let introduce the
following integral equations to describe the mechanical behavior of such as solid [1,2]

o (1) :Eg(t)-E}R(t, De(r)dr, (1)
0

Here o(¢) is the stress as a function of the time f, &(¢)is the imposed strain, Eis the Young module
and R(¢,7) is the relaxation kernel which can be found from stress relaxation tests. The solution of

equation (1) introducing Neumann series to find the resolving kernel K (¢,7)is [3]

e(t)= % o(t) + % (})K (t,v)o(r))dr, (2)

The above mentioned integral equations of Volterra has been longtime employed to describe the
viscoelastic behavior of polymers, rubbers and other materials [1, 2]. Due to the extremely high
strain (stress) rate at the beginning in creep (relaxation) conditions one needs to introduce singular
kernels. These kernels well describe the viscoelastic behavior, but in small time region. In this

paper we will employ the following kernels [3]
e Pt

R1)=4S—, ©)
t
whose resolving kernel (the creep kernel) looks like [3]
pt &
K(t)=5— AT(a)"t™ IT(an) . (4)

n=1

Here I'(«) is the gamma function.

It is very difficult to fit the parameters in equation (4) in order to well describe in large time

interval the relaxation (or creep) experimental data using only one kernel. This situation
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corresponds with one elementary viscoelastic model and many researchers introduce a great
number of elementary models [1] to better describe theviscoelastic behavior. In other words if we
well fit the experimental parameters 4,a, fand thus our stress relaxation curve well describe the

experimental points at the beginning, this curve do not coincides with the experimental data in the
end of the stress relaxation time interval i.e. they fails concerning the great time values.

2. GENERAL FRAMEWORK

In order to increase the creep or stress relaxation time interval and thus well describe the
experimental data from the beginning to the end in the case of large time interval, we propose to
involve a sum of singular kernels as follows:

N
R(t)=2. R,(1), ®)

n=1
R e Bit
with R.(1) = 4, .

%

In this case we will prove that the solution has the form
N

s(t)=%0'(t) +%E R (t,0)o(0)dr, ©6)
N Bt &

with Ki(t)=5—> AT(at;)"t%" I T(at;n) (6a)
n=1

Using the Neumann successive approximations introduced as in [5] to the resolving kernelin
equation (2) we have

K(1)= 2 R, (1), 7)
m=1
where the m-th approximation is represented as
t

R, (t)= \R,(t,x)R,, ,(x,t)dx and Ry(t)=R,. (8)

If the first equation (5) is valid we can write
t N
K, (1)= R, (1, -x)Rm l(xs t)dx, (9)
i=1
The resolving kernel taking into account equations (7, 8) can be represented as

©

© t N t
Rie0=> > Rt.xr, (vo)dc= sz%l(t,x)Rm (x,)dx +

m=l1 i=1 m=l1

e t . o t .

> ARyt xR, ((x,o)dx+ ..+ Y, \Ry(t.x)R, (x ©)dx (10)
m=1 m=1

N . N .
=2 2R )= 2 K0
=l m=1 i=1
Thus, to the solution of the linear equation (1) with kernel (5) we have
t N

8(t)=é0'(t) +%JZ R.(t,0)o(0)dr, (11)
i=1

This approach can be generalized in the case of nonlinear elastoviscous behavior. Assuming
similarity of the isochrones stress relaxation curves one can apply the following nonlinear integral
equation [4]

o(t)= (&(t)- EJR(t, o) (s(7))dr . (12)

Here ¢(&(1))is the instantaneous stress-strain curve. To well describe this curve one can apply the

Ogden relation [2]
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0(e) = 1 (Ae) M =D/ AE)M M + 4 ()% =D/ AE)® + gy () =D/ )L (13)
Here py, 15, 143,025,053  are parameters obtained from instantaneous stress-strain tests. The
solution of equation (12) can be represented as follows:

p(e(t) = o(t) + (f)l%(t, 7)o (7))dr . (14)

To obtain the strain curve (nonlinear creep) one should use the inverse function y(&(¢)) = o (e()).

In equations (13, 14) the kernels R(t, 7) and K(t,7) are the same as in equations (5, 10) and can be
identified from small strain tests.

3. EXPERIMENTAL RESULTS AND COMPARISONS

Here we will illustrate the applicability of our approach concerning the stress relaxation and the
respective creep curves for polyisoprene rubber at large time interval 0<¢<8000 seconds.The
Ogden and the stress relaxation kernel parameters are identified from figures 1 and 2. The creep
curves (small strains) are illustrated in figures 3. In figure 4 one can see the creep curves in the case
of large strains — equation (14).
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Figure 3. Linear creep curves Figure 4. Nonlinear creep curves
In all the figures the experimental data are plotted with stars.
4. CONCLUSION

The proposed sum of relaxation kernels in the hereditary theory to predict the mechanical
behavior of viscoelastic solids well describe the creep and stress relaxation curves in large time
interval. The authors demonstrated that if the resolving kernel of one singular stress relaxation

kernel in the respective integral equation is known, the resolving creep kernel of the proposed sum
of stress relaxation kernels represent a sum of the respective creep resolving kernels. This
approach works well due to the great number of parameters and the singularity of the kernels.
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