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Abstract: This paper deals with the determination of thermal stresses in nonhomogeneous prismatic bars by the application of theorem of 
minimum of complementary energy. The material properties and the applied thermal field do not depend on the axial coordinate. The 
presented analysis is valid for compound bars and bars made from functionally graded materials. The applied mechanical loads are bending 
moment and axial force at the end cross sections of the nonhomogeneous bar. An example illustrates the application of the presented formula 
to determine the normal stress field. 
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1. INTRODUCTION 
This paper deals with the determination of thermal stresses in nonhomogeneous prismatic bars. The derivation of the formula for 
stresses caused by mechanical and thermal loads is based on the principle of minimum of complementary energy. The cross section 
of the bar is an arbitrary bounded plain domain and the material properties and the temperature field do not depend on the axial 
coordinate. The considered inhomogeneity means that the material properties are arbitrary functions of the cross-sectional 
coordinates. The presented analysis is valid for compound bars whose material properties are discontinous functions of the cross-
sectional coordinates and bars made from functionally graded materials, whose material properties are smooth functions of the 
cross-sectional coordinates. If there are no prescribed surface displacements than the theorem of minimum of complementary 
energy can be formulated as in [1-3]. 
Among all the sets of admissible stresses σx, σy, σz, τxy, τxy, τxy which satisfy all the equilibrium and the prescribed stress boundary 
conditions, the set of actual stress components makes the functional ( ), , , , ,c x y z xy xz zyσ σ σ τ τ τΠ%  defined by 

( )2 2 2 2 2 21 2 2(1 )( ) ( ) d
2c x y z x y y z z x xy yz zx x y z

V

T V
E

σ σ σ ν σ σ σ σ σ σ ν τ τ τ α σ σ σ  Π = + + − + + + + + + + + +   ∫%          (1) 

an absolute minimum. 
In Eq. (1) σx, σy, σz are normal stresses, τxy, τxy, τxy are shearing stresses, E is the 
Young modulus, ν is the Poisson ratio, α is the coefficient of thermal expansion, 
T=θ-θ0, where θ is the absolute temperature and θ0 is the reference temperature 
at which the stresses are zero if the body is undeformed, V is the space domain 
occupied by the thermoelastic body (Figure 1). 
The considered nonhomogeneous prismatic bar and its mechanical loads are 
shown in Figure 2, where zF=F e is the applied axial force and 

x x y yM M= +M e e  is the applied bending moment. The material properties are 
functions of x and y, that is, we have E=E(x,y) and α=α(x,y). In our formulation 
in the considered thermoelastic bar problem the Poisson's ratio does not appear. The temperature difference field T also depends 
only on x and y, it is a given function. In the framework of strenght of materials the equilibrium stress field is characterized by the 
equations 

0, ( , ),x y yz xy xz z z x yσ σ τ τ τ σ σ= = = = = =                                               (2) 

[ ]1 ( , ) ( , )d 0,z z
A

K x y x y A Fσ σ= − =∫                                                                        (3) 

[ ]2 ( , ) ( , )d .z z z
A

x y x y Aσ σ= − × =∫K R e M 0                                                           (4) 

 
Figure 1. Thermoelastic body 
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Figure 2. Nonhomogeneous prismatic bar 

Eqs. (2-4) refer to the coordinate system Oxyz with unit vectors , ,x y ze e e and  
,x yx y= +R e e                                                                                                          (5) 

the cross between two vectors in Eq. (4) denotes their vectorial product and the cross section of the nonhomogeneous bar is A. Here 
we note that axis z is the E-weighted center line of the nonhomogeneous bar, it connects of E-weighted centres of cross sections. 
The E-weighted centre CE is defined by the next equation: 

( , ) d .
A

E x y A =∫ R 0                                                                                                   (6) 

The state of stresses are independent of the axial coordinate z from this it follows that the axial force and bending moment do not 
change along axis z. The complementary energy of nonhomogeneous bar according to Eq. (1) is as follows 

[ ]21 ( , ) ( , ) ( , ) ( , ) d ,
2 ( , )c z z

A

L x y x y T x y x y A
E x y

σ α σ
 

Π = + 
 
∫%                                        (7) 

where L is the lenght of the bar (Figure 2). Let [ ]( , )c z x yσΠ  be defined as 

[ ]21 ( , ) ( , ) ( , ) ( , ) d
2 ( , )c z z

A

x y x y T x y x y A
E x y

σ α σ
 

Π = + 
 
∫ .                                    (8) 

2. THE DETERMINATION OF STRESS FIELD 
According to the minimum of complementary energy we look for the minimum of [ ]( , )c z x yσΠ  under the subsidiary conditions 
given by Eqs. (3), (4). The method of Lagrange multipliers will be used [4, 5]. We define a new functional which contains the 
constraints given by Eqs. (3) and (4) 

[ ] [ ] [ ] [ ]1 2 1 1 2 2( , ), , ( , ) ( , ) ( , ) .z c z z zF x y x y K x y x yσ λ σ λ σ σ= Π − − ⋅λ λ K                                    (9) 
In Eq. (9) the scalar product of two vectors is indicated by dot. The necessary condition of minimum is formulated by the next 
varational equation 

1 2 1

2

( , )
( , ) ( , ) d ( , )d

( , )

( , )d 0.

z
z z

A A

z z
A

x yF x y T x y A x y A F
E x y

x y A

σ
δ α λ δσ δλ σ

δ σ

  
= + − − ⋅ − −   

   
 

− ⋅ − × = 
 

∫ ∫

∫

λ R

λ R e M
                                (10) 

Since 21, ,zδσ δλ δ λ  are arbitrary we obtain the following equations from Eq. (10) 
[ ]1 2( , ) ( , ) ( , ) ( , ) ,z x y E x y x y T x yσ λ α= + ⋅ −λ R                                                                        (11) 

( , )d , ( , )d .z z z
A A

F x y A x y Aσ σ= × =∫ ∫e M R                                                                     (12) 

Combination of Eq. (6) with Eqs. (11) and (12) gives 

1 , ( , ) ( , ) ( , )d .T
T

E A

F N N E x y x y T x y A
A

λ α
+

= = ∫                                                                     (13) 

In Eq. (13)1 

( , )dE
A

A E x y A= ∫ .                                                                                                 (14) 

Substitution of Eq. (12)2 into Eq. (11) yields the next expression 
1 2( , ) d ( , ) d ( , ) ( , ) ( , )d .z

A A A

E x y A E x y A E x y x y T x y Aλ α+ ⋅ − = ×∫ ∫ ∫R λ R R R e Mo                               (15) 

Here the circle between two vectors denotes their tensorial (dyadic) product. We introduce the Euler tensor  
( )( , ) d ,y x x xy x y y x x y y

A

E x y A I I I= = + + +∫I R R e e e e e e e eo o o o o                                   (16) 
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where 
2 2( , ) d , ( , ) d , ( , ) d .x xy y

A A A

I E x y x A I E x y xy A I E x y y A= = =∫ ∫ ∫                                               (17) 

Let MT be defined as 
( , ) ( , ) ( , ) .z T

A

E x y x y T x y dAα× = ∫e M R                                                                (18) 

In Eq. (15) the coefficient of λ1 vanishes, that is we have 
2 .z T z⋅ = × + ×I λ e M e M                                                                                       (19) 

Denote the unit vector in direction of 2λ  is ,x x y ym m= +m e e  which means that 2 2λ=λ m . Let z x x y yn n= × = +n m e e e  be. 
From Eq. (19) we get 

( ) ( )2 2( ) ,z z T z z z Tλ λ⋅ × = ⋅ = × + × × = +I m e I n e ×M e e M e M M    2 .Tλ ⋅ = +I n M M                 (20) 
From Eq. (20) it follows that   

( )1
2 .Tλ −= ⋅ +n I M M                                                                                      (21) 

Eq. (21) gives a possibility to obtain the unit vectos n  
( )
( )

1

1
.T

T

−

−

⋅ +
=

⋅ +

I M M
n

I M M
                                                                                                      (22) 

On the other hand from Eq. (20) we have 
2 ,Tλ ⋅ ⋅ = ⋅ + ⋅n I n M n M n                                                                                        (23) 

that is 
2 2

2 , 2 , .Tn n
n x y xy y x y x Tn T n

n

M M
I I n I n n I n M M

I
λ

+
= = ⋅ ⋅ = + + = ⋅ = ⋅n I n M n M n               (24) 

In Eq. (11) 
( ) ( ) ( )2 2 2 2 2 .z x y x yxm ym yn xnλ λ λ λ⋅ = ⋅ = × ⋅ = + = −λ R m R e n R                           (25) 

Summarizing the results obtained the following formula can be derived for the σz 

( )( , ) ( , ) .n TnT
z x y

E n

M MF Nx y E x y yn xn T
A I

σ α
 ++

= + − − 
 

                                         (26) 

3. EXAMPLE 
The cross section of the considered bar is shown in Figure 3. This cross section is made of two different homogeneous materials 
with Young moduli E1=E, E2=3E and the coefficients of linear thermal expansion α1=α, α2=2α. There are no applied mechanical 
loads, that is ,=F 0  .=M 0  The temperature difference T=constant on the whole cross section. For homogeneous cross section 
the uniform temperature does not produce any stress field, the homogeneous bar is stress free. The position of the E-weighted 
centre of cross section is given in Figure 3. The elements of Euler tensor are 

4 4 4514 , 64 , 96 .x y xyI Ec I Ec I Ec= = = −                                                               (27) 
A simple computation gives 

248 .EA Ec=                                                                                              (28) 
From Eq. (18) we get 

3 3( , ) ( , ) d 24 48 .T z x y
A

T E x y x y A E Tc E Tcα α α
 

= × = + 
 
∫M R e e e                                                     (29) 

Application of formula (22) gives 
0.9751 0.2216 .x y= +n e e                                                                                         (30) 

From Eq. (16) and Eq. (24)2 it follows that 
2 2 42 44.5073n x y xy y x y xI I n I n n I n Ec= + + = .                                                                      (31) 

Eq. (13)2 for NT gives 
272TN E Tcα= ,                                                                                                 (32) 

and from Eqs. (24)4 and (29) we get  
334.036 .TnM E Tcα=                                                                                     (33) 

By the use of above computed values we can determine the stress field of composite bar caused by uniform temperature field. We 
determine the normal stresses at points P(-4c, 2c) and Q(8c, -2c). The computation gives 
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( ) 20.002 ,z R E Tσ α=                                                                                          (34) 
( ) 5.0413 .z Q E Tσ α= −                                                                                           (35) 

4. SUPPLEMENTARY NOTE 
In this section the mechanical meaning of the Lagrange 
multipliers λ1 and 2λ  will be given. The stress-strain relation 
for one-dimensional problem of thermoelasticity is formulated 
as [6, 7] 

[ ]( , ) ( , ) ( , ) ( , ) .z zx y E x y x y T x yσ ε α= −           (36) 
In Eq. (36) εz is the normal strain. Comparison of Eq. (11) with 
Eq. (36) gives 

1 2 1 2( , ) .z x yε λ λ λ= + ⋅ = + ⋅λ R m R                                                                             (37) 
Eq. (37) shows that λ1 is normal strain at the E-weighted centre CE of cross section and 2λ  is the curvature vector of the deformed 
E-weighted centre line, that is 

1 0 2(0,0) , ,zε λ ε κ= = =λ m                                                                       (38) 
where κ is the curvature of the deformed longitudinal fiber determined by x=0, y=0 and 0 z L≤ ≤ . The thermoelastic pure 
bending problem of nonhomogeneous prismatic bars, based on the Euler-Bernoulli beam theory was analysed by Stokes [8]. Stokes 
paper uses a direct approach starting from the assumed form of normal strain which is 

( , ) n
z x y

R
η ηε −

= .                                                                                                (39) 

Here 

0
1, , .N R
R

η κ η ε= ⋅ = = −m R                                                                             (40) 

The zero line of longitudinal strains is given by Nη . Our approach is different from the one presented by Stokes [8]. It demonstrates 
the efficiency of the variation method in solving the problems of mechanics of solids. 
5. CONCLUSIONS 
The theorem of minimum of complementary energy is used to get the formula of thermal stresses in nonhomogeneous prismatic 
bars. The solution of formulated variational problem is based on the application of Lagrange multipliers. A presented example 
illustrates that the nonhomogeneous prismatic bar under the action of uniform temperature field is not stress free. 
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Figure 3. Nonhomogeneous cross section 


