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Abstract: In this paper, hydromagnetic convection of a visco-elastic fluid over a continuously moving vertical surface with uniform suction and 
heat flux in presence of first-order chemical reaction through porous medium has been investigated. A uniform magnetic field is assumed to be 
applied perpendicular to the wall. The induced magnetic field assumed to be negligible. The solutions are obtained for velocity, temperature 
and concentration profiles. The profiles of velocity and skin friction are presented graphically for different combinations of the parameters 
involved in the flow problem. 
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1. INTRODUCTION 
The study of combined heat and momentum transfer from a heated moving surface to a quiescent ambient medium is important in 
many engineering applications such hot rolling, wire drawing and crystal growing. The heat treatment of materials travelling 
between a feed roll and a wind-up roll or conveyor belts, the lamination and melt spinning processes in the extrusion of polymers 
have the characteristics of moving continuous surfaces.  In ion propulsion, electromagnetic pumps, power generators, controlled 
fusion research, plasma jets, chemical synthesis etc; the applications of magnetohydrodynamics is prominent.  
Sakiadis [1] studied the two dimensional boundary layer flows over a continuous solid surface moving with constant velocity in an 
ambient fluid. The flow is quite different from the boundary layer flow over a semi-infinite flat plate due to the entertainment of 
the ambient fluid. Vajravelu [2] studied the exact solution for hydrodynamic boundary layer flow and heat transfer over a 
continuous, moving, horizontal flat surface with uniform suction and internal heat generation/absorption. Again, Vajravelu [3] 
extended the problem (Vajravelu [2]) to vertical surface. Crane [4] studied the boundary layer flow caused by a stretching sheet 
whose velocity varies linearly with the distance from a fixed point on the surface. Kumar et al. [5] discussed the hydromagnetic 
flow and heat transfer on a continuously moving vertical surface. 
The study of heat and mass transfer through and across porous media is receiving considerable attention of many researchers 
because of its varied applications in the field of cosmical and geophysical sciences. Applications related to porous media can be 
found in monographs by Nield and Bejan [6] and Pop and Ingham [7].  Kim and Vafai [8] and Harris et al. [9] studied the problem of 
natural convection flow through porous medium past a plate. Magyari et al. [10] have investigated analytical solutions for 
unsteady free convection in porous media. Chaudhary and Jain [11] studied magnetic and mass diffusion effects on the free 
convection flow, when the plate is made to oscillate with a specified velocity. Mahmoud [12] studied the effects of radiation and 
variable viscosity on hydromagnetic boundary layer flow along a continuously moving vertical plate with suction and heat flux.  
All the above investigators, however, restrict their analysis to the flow of Newtonian fluids. Most fluids such as molten plastics, 
artificial fibres, drilling of petroleum, blood and polymer solutions are considered non-Newtonian fluids. Choudhury and Das [13] 
discussed the hydromagnetic flow and heat transfer of a visco-elastic fluid on a continuously moving vertical plate. Das [14] studied 
the effects of viscoelasticity on unsteady MHD free convection and mass transfer flow of a visco-elastic, incompressible, electrically 
conducting fluid past an infinite hot vertical porous plate embedded in porous medium. 
The main objective of the present work is to investigate the effects of visco-elastic parameter characterised by second-order fluid 
on steady hydromagnetic flow of a visco-elastic fluid over a continuously moving vertical surface with uniform suction and heat 
flux in presence of first-order chemical reaction through porous medium. The constitutive equation for the second-order fluid is of 
the form: 
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where S  is the stress tensor, p is hydrostatic pressure, I is unit tensor, )2,1n(An =  are the kinematics Rivlin-Ericksen tensors, 

321 ,, µµµ  are the material co-efficients describing the viscosity, elasticity and cross- viscosity respectively. The material co-
efficients 321 ,, µµµ are taken constants with 31 andµµ  as positive and 2µ as negative (Coleman and Markovitz [15]). The 
equation (1) was derived by (Coleman and Noll [16]) from that of simple fluids by assuming that stress is more sensitive to the 
recent deformation than to the deformation that occurred in the distant past. 
2. MATHEMATICAL FORMULATION 
Consider a steady boundary layer convective flow through porous medium of 
an electrically conducting visco-elastic fluid on a continuous surface, issuing 
from a slot and moving vertically with a uniform velocity wu in a fluid and 
heat is supplied from the plate to the fluid at a uniform rate, in the presence 
of a uniform magnetic field of strength 0B . Let the x-axis be taken along the 
direction of motion of the sheet and the y-axis be normal to the surface. The 
induced magnetic field is assumed to be negligible. It is assumed that there 
exists a first order chemical reaction between the fluid and the fluid species 
concentration.  The physical model of the problem is shown in Figure 1. 
Under the above assumptions, the flow is governed by the following equations: 
Continuity equation: 
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Equation of energy: 
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Equation of mass diffusion: 
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where 1σ  is the electrical conductivity, Tβ is the thermal expansion coefficient, T′  is the temperature, ∞′T  is the temperature of 
the fluid far away from the plate, Cβ  is the concentration coefficient, C′ is the concentration, ∞′C  is the concentration in the fluid 
far away from the plate, 1k  is the permeability  of the porous medium, κ is the thermal conductivity. 
The corresponding boundary conditions are: 
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The following non-dimensional quantities are introduced: 
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Figure 1: Physical model of the problem 



ANNALS of Faculty Engineering Hunedoara– International Journal of Engineering 

187 | Fascicule 2 

where Gr  is the thermal Grashof number, Gm  is the solutal Grashof number, Pr is the Prandtl number and M  is the Hartmann 
number, Sc is the Schmidt number, Re  is the Reynolds number, K is the parameter of the porous medium, q  is the heat flux, D  is 

the mass diffusivity, 0v  is the suction velocity at the plate, and 
ρ
µ

=υ 1
1

. Other physical variables have their usual meanings. 

We make use of the assumptions that the velocity and temperature fields are independent of the distance parallel to the surface (as 
given in [17]) and the Boussinesq’s approximation. Equations (3), (4) and (5) are reduced to the following non-dimensional form: 
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where 
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=α  is the visco-elastic parameter. 

The corresponding boundary conditions are 
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Equations (9) and (10) are solved by using the boundary conditions (11) and their solutions are given by,                                                                   
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The presence of elasticity in the governing fluid flow constitutes a third-order differential equation (8), but for Newtonian fluid 

0=α , then the differential equation reduces to of order two. Also, it is seen that there are insufficient number of boundary 
conditions for the unique solution of (8). Since α   is a measure of elasticity and for small shear rate  1<α  , and hence we can 
assume that  
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Substituting (14) in (8) and equating the coefficients of  10 ,αα  and neglecting those of ,2α the following equations are obtained 
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The corresponding boundary conditions are  
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Solving the equations (15) and (16) under conditions (17), and then substituting in (14), we get 
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The local skin friction (wall shear stress) at the surface is given by 
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3. RESULTS AND DISCUSSION 
The computed solutions for the velocity, temperature, concentration and skin friction are valid at some distance from the slot, even 
though suction is applied from the slot onward. Selected computations have been depicted graphically in all the figures. In this 
study, main emphasis is given on the effects of the visco-elastic parameter α  on the governing flow with the combination of the 
other flow parameters. 

 
Figure 2: Velocity profiles for different M at 

.3.0Sc,3Gm,2Gr,2K,3.0 ====−=α  

 
Figure 3: Velocity profiles for different α at 

.3.0Sc,2Gm,2Gr,2K,1.0M =====  

 
Figure 4: Velocity profiles for different K at 

.3.0Sc,3Gm,2Gr,1.0M,3.0 ====−=α  

 
Figure 5: Velocity profiles for different Sc at 

.5.0K,3Gm,2Gr,1.0M,3.0 ====−=α  

 
Figure 6: Velocity profiles for different Gr at 

.5.0K,3Gm,3.0Sc,1.0M,3.0 ====−=α  

 
Figure 7: Velocity profiles for different Gm at 

.5.0K,2Gr,3.0Sc,1.0M,3.0 ====−=α  
Figures 2-7 represent the velocity profiles U  against Y under the effects of Hartmann number M , visco-elastic parameterα , 
porous parameter K , Schmidt number Sc , thermal Grashof number Gr  and solutal Grashof number Gm respectively, with fixed 
values of Prantdl number )3Pr( = . From these figures, it is evident that the velocity field increases as K , Gr , Gm increase and 
decreases as α , M  increases. It indicates the fact that the fluid motion is retarded due to application of transverse magnetic field 
and the growth of magnitude of viscoelasticity of the fluid, whereas it is accelerated under the effects of porosity, thermal diffusion 
and mass diffusion.  
Figures 8-10 represent the effects of the Hartmann number, porous parameter and solutal Grashof number on skin friction, 
respectively, for various values of the visco-elastic parameter ( )08.0,06.0,04.0,02.0,0 −−−−=αα .  
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Increasing the Hartmann number clearly enhances the skin 
friction, whereas increase in porosity parameter and solutal 
Grashof number reduces the skin friction for both Newtonian 
and visco-elastic fluid. There is a decrease in the skin friction 
values at the surface accompanying a rise in the absolute 
value of the visco-elastic parameter α  from Newtonian

)0( =α  to visco-elastic fluid )0( ≠α  with increasing  
values of Hartmann number and solutal Grashof number, 
whereas it increase with the increasing values of  porosity 
parameter. 
The temperature field and the concentration field are not 
significantly affected by the visco-elastic parameter. 
4. CONCLUSION  
An analytic solution of a visco-elastic fluid for hydromagnetic 
convection at a continuously moving vertical surface in 
porous medium with chemical reaction and uniform suction 
is obtained. The solutions are obtained in exponential 
functions. It was found that the velocity decreases with the 
increasing values of the Hartmann number, magnitude of 
the visco-elastic parameter, Schmidt number, whereas 
increases as porous parameter, thermal Grashof number, 
solutal Grashof number increase. Skin friction increases in 
the presence of a magnetic field as compared to its absence 
in both Newtonian and non-Newtonian cases. The presence 
of a porous medium and diffusion of mass decreases the skin 
friction for both Newtonian and visco-elastic fluid.  
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