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Abstract: The Magnetohydrodynamics (MHD) Blasius boundary layer flow over a flat plate in the presence of transverse magnetic field is 
studied in this paper. The approximate solution and skin friction coefficient of MHD boundary layer flow are obtained by using Runge-Kutta 
fourth order along with shooting technique and a method that couples the differential transform method (DTM) with Padé approximation 
called DTM-Padé. The approximate solutions are presented with the help of graphs and a table. The results of previous authors as particular 
cases are obtained confirming our results. It is suggested that inclusion of forcing force in the boundary layer equation needs higher dimension 
Padé approximants for better accuracy. 
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1. INTRODUCTION 
Nonlinear differential equations are usually arising from mathematical modeling of many physical systems. Some of them are 
solved using numerical methods and some are solved using analytical methods such as perturbation ([1],[2]). The numerical 
methods such as Runge-Kutta method are based on discritization techniques and they only permit us to calculate the approximate 
solutions for some values of time and space variables, which cause us to overlook some important phenomena, in addition to the 
intensive computer time required to solve problem. Thus, it is often costly and time consuming to get a complete curve of results 
and so in these methods, stability and convergence should be considered so as to avoid divergence or inappropriate results. 
Numerical difficulties additionally appear if a nonlinear problem contain singularities or has multiple solutions. Perturbation 
techniques are based on the existence of small / large parameters, the so- called perturbation quantity. Unfortunately, many 
nonlinear problems in science and engineering do not contain such kind of perturbation quantities at all. Some non-perturbative 
techniques, such as the artificial small parameter method [3], the Adomain’s decomposition method [4] etc. have been developed. 
Different from perturbation techniques, these non-perturbative methods are independent upon small parameters. However, both 
the methods themselves cannot provide us with a simple way to adjust and control the convergence region and rate of given 
approximate series.      
The flow and heat transfer of a viscous and incompressible fluid induced by a continuously moving or stretching surface in a resting 
fluid is relevant to many manufacturing processes such as polymers involves the cooling of continuous strips or filaments by 
drawing them through a quiescent fluid [5]. Further, glass blowing, casting of metals and spinning of fibers involves the flow due 
to a stretching surface. Crane [6] was first to study the boundary-layer flow due to stretching surface in an ambient fluid and 
applied a similarity transformation for steady boundary-layer flow by stretching of a sheet when its velocity varying linearly with 
the distance from a fixed point. He [7] considered the influence of heat transfer in flow over a stretching surface in the case where 
the temperature difference between the surface and the ambient fluid is proportional to a power of distance from a fixed point [8].   
Magnetohydrodynamics (MHD) is the study of the interaction of conducting fluids with electromagnetic phenomena. The flow of 
an electrically conducting fluid in the presence of a magnetic field is important in various areas of technology and engineering such 
as MHD power generation, MHD flow meters, and MHD pumps (Hayat et al. ([9], [10]), Abdelkhalek [11]).  As the MHD flow finds a 
lot of applications in industries and scientific research, the main goal of the present study is to extend the work of Peker et al. [12] 
which was confined to the flow without magnetic interaction. Moreover, in the result and discussion we have presented some 
recent works as particular cases in conformity with the present method of solution.  
2.BLASIUS MAGNETIC FLOW 
Consider a steady two dimensional MHD boundary layer flow of a viscous incompressible electrically conducting fluid past a thin 
flat plate which is placed in the direction of a uniform velocityU∞ . Let the origin of the co-ordinate be at leading edge of the plate, 
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the x − axis be the direction of the uniform stream and the y − axis normal to the plate. An uniform transverse magnetic field of 
strength 0B  has been applied perpendicular to the plate. The Prandtl boundary layer equations subject to above considerations 
are  
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where u  and v  are the velocity components parallel and perpendicular to the plate  respectively. 
To study the boundary layer flow the following similarity transformations are used; 

, ( )Uy xU f
x
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∞
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where ( , )x yη  is the similarity variable and ( , )x yψ is the stream function.  
The velocity components u  and v  are defined by  
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y x
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= − ∂ ∂ 
 

The momentum equation (2) and the boundary condition (3) can be written as  
1( ) ( ) ( ) ( ) 0,
2

f f f Mfη η η η′′′ ′′ ′+ − =           (4)  

(0) 0, (0) 0, ( ) 1,0 .f f f η′ ′= = ∞ = < < ∞                     (5)  

where 
2

0BM σ
ρ

= , the magnetic parameter,σ  and 0B  are respectively, the electrical conductivity and the magnetic induction. 

However, Equations (4), (5) and other forms of Blasius problem have boundary conditions in unbounded domains and this creates 
difficulty for application of numerical methods for solution. To overcome this difficulty, Pade approximants and the differential 
transformation can be applied for numerical solution.  
3. DIFFERENTIAL TRANSFORMATION METHOD 
Differential transformation method is a numerical method based on Taylor expansion. This method tries to find the coefficients of 
series expansion of unknown function by using the initial data on the problem. The concept of differential transformation method 
was first proposed by Zhou [13]. It was applied to electric circuit analysis problems. Afterwards, it was applied to several systems 
and differential equations. For instance, initial value problems [14], difference equations [15], integro-diifferential equations [16], 
and partial differential equations [17], system of ordinary differential equations [18]. 
Definition 1. 
The one dimensional differential transform of a function ( )y x at the point 0x x= is defined as follows: 

0
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where ( )y x  is the original function and ( )Y k  is the transformed function. 
Definition 2. 
The differential inverse transform of  ( )Y k  is defined as follows: 
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The following theorems are deduced from definitions as follows: 
Theorem 1. If ( ) ( ) ( ),f x g x h x= ± then ( ) ( ) ( ).F k G k H k= ±  
Theorem 2. If ( ) ( )f x g xλ= , then ( ) ( )F k G kλ= . 



ANNALS of Faculty Engineering Hunedoara– International Journal of Engineering 

203 | Fascicule 3 

Theorem 3. If ( ) ( ) ( ),f x g x h x= then 1

1 1
0

( ) ( ) ( ) ( ) ( ).
k

k
F k G k H k G k H k k

=

= ⊗ = −∑
 

Theorem 4. If 
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4. PADE APPROXIMANT 
Some techniques exist to accelerate the convergence of a given series. Among them the so-called Pade approximant is widely 
applied (Baker and Morris, [19]). Suppose that a function ( )f η  is represented by a power series, 
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This expression is the fundamental starting point of any analysis using Pade approximants. The notation , 0,1, 2ic i = − − − − is 
reserved for the given set of coefficients and ( )f η  is the associated function. [ / ]L M  Pade approximant is a rational fraction, 
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which has a Maclaurin expansion, agrees with equation (9) as far as possible.  It is noticed that in equation (10) there are L+1 
numerator and M+1 denominator coefficients. So there are L+1 independent numerator and M independent denominator 
coefficients, making L+M+1 unknown coefficients in all. This number suggests that normally [ / ]L M ought to fit the power 

series equation (9) through the orders 21, , L Mη η η +− − − − − . In the notation of formal power series  
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Equating the coefficients of 1 2, ,L L L mη η η+ + +− −−  we get, 
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If 0,j <  we define 0ic =  for consistency. Since 0 1,b = equation (13) become a set of M linear equations for M unknown 
denominator coefficients.    
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From these equations, ib  may be found. The numerator coefficients 0 1, , , ,La a a− − −−  follow immediately from equation (12) 

by equating the coefficients of  21, , , , L Mη η η +− − −  such as, 
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Thus equations (14) and (15) normally determine the Pade numerator and denominator and are called Pade equations. The [L/M] 
Pade approximant is constructed which agrees with the equation (11) through order L Mη + .  
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5. SOLUTION OF THE PROBLEM 
Consider the equation (4) with boundary conditions of a classical Blasius flow (Wazwaz [20]), 

1( ) ( ) ( ) ( ) 0,
2

f f f Mfη η η η′′′ ′′ ′+ − =     (16)  

(0) 0, (0) 1, ( ) 0, 0.f f f η′ ′= = −∞ = −∞ < <     (17) 
Combination of the series obtained by DTM and Pade approximant will yield the numerical value of (0)f ′′ so as to reduce the 
present boundary value problem (BVP) into initial value problem (IVP). The diagonal Pade approximants of degree[2 / 2]  is used 
to determine the approximate solution of generalized MHD Blasius equation for different values of magnetic parameter. In 
particular, 0.0M = gives rise to the solution of Blasius equation. 
Let (0)f A′′ = , where A  is a positive constant. Now, the differential transform method (DTM) will be applied to equation (16) 
as follows. 
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The differential transform of boundary conditions are as follows, 
(0) 0, (1) 1, (2) / 2F F F A= = = .    (19)  

Applying the differential inverse transform we get,  
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Now our aim is to determine A using the boundary condition  
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Applying the boundary condition (22) to [2/2] Pade approximant of the derivative of the polynomial solution (21) we get, 
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which gives 0.5773502693A = . 
Case II: ( 1M = ) 
The DTM expression (20) gives, 
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Applying the boundary condition (22) to [2/2] Pade approximant of the derivative of the polynomial solution (23) we get, 
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which gives 1.245963023848551A = . 
Case III:  ( 2M = ) 
The DTM expression (20) gives, 
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Applying the boundary condition (22) to [2/2] Pade approximant of the derivative of the polynomial solution (24) we get, 
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which gives 1.585084287112327A =  
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6. NUMERICAL PROCEDURE 
The non-linear differential equation (4) with the boundary conditions (5) 
and (17) constitute a boundary value problem which is solved 
numerically by the efficient shooting technique. The BVP is equivalent to 
a system of first order differential equations with boundary conditions. 
Equation (4) is integrated numerically by forth order Runge-Kutta 
scheme with the given boundary conditions and a guessed trail values of 

(0)f ′′ . However the numerical solution thus obtained will not 
generally satisfy the right boundary condition. At this end Newton-Raphson scheme is employed to correct the arbitrary guess 
values such that the numerical solution will even satisfy the required boundary conditions (5) and (17). The convergence criterion 
largely depends on fairly good guesses of the initial conditions in the shooting technique. The iterative procedure is terminated 
until the relative difference between the current and the previous values are matches with a tolerance of 610− .  
7. RESULTS AND DISCUSSION 
An attempt has been made to solve classical Blasius boundary layer equation when the flow is subjected to a uniform magnetic 
field by differential transform method and Pade approximation. 
Figure 1 presents the numerical solution of Blasius equation by DTM and DTM-Pade methods for both the cases; absence of 
magnetic field ( 0.0M = ) and presence of magnetic field ( 1.0M = ). The result is in good agreement with Peker et al. [12]. 

  
Figure 1. Results obtained by DTM and [2/2] dtm-pade Figure 2. Comparison plot of f” by DTM and [2/2] dtm-pade 

  
Figure 3. Transverse velocity (Numerical Methods) Figure 4. Longitudinal velocity (Numerical Method), presence of Kp 

Figure 2 exhibits the velocity distribution of MHD flow under 
the influence of magnetic field for various values of magnetic 
parameter, M. It is interesting to observe that the solutions for 
both DTM and DTM associated with Pade, coincide (i.e. 
coincidence of dotted curve with continuous curve) in the 
absence of magnetic field ( 0.0M = ) and for small value of 
M i.e.( 1.0M = ). In case of 2.0M = , the solutions differ 
slightly but uniformly when 0.35η > . Therefore, it is 
suggested that higher order Pade approximants may yield 
better result for greater magnetic interaction. Further, it is 
observed that an increase in magnetic field contribute to the growth of boundary layer thickness. 
The numerical approach to the transverse velocity is presented in the Figure 3 and comparison has been made for both the absence 
and presence of magnetic field. It is observed that the numerical investigation is an good agreement with that of DTM and DTM-
Pade approximant solution. Hence it is conclude that Lorentz force has a retarding effect and the velocity field is asymptotic in 
nature with higher value of magnetic parameter.  In the absence of magnetic parameter there is pick near the boundary layer.  
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Figure  A. Flow geometry 

 
Figure 5. Longitudinal velocity (Numerical Method), absence of Kp 
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Figure 4 and 5 both presents the longitudinal velocity profile in both the presence / absence of magnetic parameter. Figure 4 
exhibits the velocity profile for the problem set (4) with the boundary condition (5) and Figure 5 presents the profile for the 
boundary condition (17) used for the classical Blasius 
flow [20]. 
Table-1 presents the values of skin friction for different 
values of the magnetic parameter by using both Pade 
approximant and numerical methods. The result is in 
good agreement with that of previous authors. It is 
observed that an increase in magnetic parameter leads to an increase in the values of skin friction. The same effect of magnetic 
parameter was observed by Su and Zheng [21]. 
8. CONCLUSION  
It may be concluded that the present method is an efficient method to solve non-linear boundary layer equations. Moreover, 
inclusion of additional forcing forces such as magnetic field etc. needs higher order Pade approximants for the stability of the 
solutions. 
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Table-1: Skin friction coefficient 

M Skin Friction Skin Friction Skin Friction 
DTM-Pade Blasius flow Classical Blasius flow 

0 0.577350269 0.5045587599 0.5078780101 
1 1.245963023 1.1646497090 1.0638332069 
2 1.585084287 1.3936314590 1.3308454067 

 


