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Abstract: This paper presents a novel fuzzy identification method for dynamic modelling of quadrotor UAVs. The method is based on a special 
parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter 
representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact 
throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the Euler-Lagrange based equations of 
motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling 
the Coriolis effects, gyroscopic and centrifugal terms. All linear parameters are evaluated by the least squares method. The non-linear 
parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. 
Keywords: quadrotor UAV, dynamic model, fuzzy system, fuzzy-partition, unconstrained optimization, genetic algorithms, gradient descent 
search 
 
1. INTRODUCTION 
Quadrotors are popular representatives of unmanned aerial vehicles (UAVs) of versatile applicability, since they are relatively easy to 
control and capable of vertical take-off and landing. Also the quadrotor architecture has simple mechanics, high relative payload 
capability and good maneuverability. The study of quadrotor kinematics and dynamics helps to understand the physics of it and its 
behavior as described in [1-2].  
High speed aerial platforms in open door environments are highly nonlinear systems subject to many nonlinear perturbations like (1) 
drag like effects: blade flapping, induced drag, translational drag, profile drag and parasitic drag, (2) ground effect, (3) in vertical 
descent: (i) vortex ring state, (ii) turbulent wake state, (iii) windmill brake state as described in [3].  Precision, robustness and 
adaptability of a mathematical model is a starting point to achieve precise and efficient autonomous control of the system [4]. 
Mathematical model design of complex real systems can readily take the so-called black-box common approach, which uses 
exclusively numerical system input-output data pairs for constructing the model [5]. Without deeper understanding of the problem, 
these black box models can easily end up being clumsy and working only in some specific setups, without any guaranties for general 
precision or robustness. In contrast to this white box (also called glass box or clear box) modelling uses extensive, usually current 
state of the art physics and mathematics analysis and derivation tools, presuming to know all necessary information to end up with 
still only simplified models,  as real complex nonlinear systems can in the end be only approximated.  
Grey-box modelling relays on both input-output data and essential expert knowledge; efficiently incorporates them into the model 
structure used for system identification [6].  
Fuzzy modelling can be conducted as black-box modelling where all the system knowledge is mere input-output data, however 
when expert knowledge is readily available, we should take advantage of it – fuzzy grey-box modelling is a rational choice. 
Identification of linear parameters is a well-studied area, with efficient matrix algebra and singular value decomposition based 
reliable tools [6]. Non-linear parameters can also be simply traced to their local optimum with well-studied gradient descent 
methods, but we should always keep in mind that gradient descent methods are trapped by local optimum areas [7].  
Evolutionary algorithms are robust global optimum search engines, capable of multi-objective search as described in [8]-[11]. 
2. QUADROTOR MATHEMATICAL MODEL 
The complete dynamics of an aircraft, taking into account aero-elastic effects, flexibility of wings, internal dynamics of the engine, 
and the whole set of changing environmental variables is quite complex and somewhat unmanageable for the purpose of 
autonomous control engineering [12]. 
The quadrotor UAV is controlled by angular speeds of four motors. Each motor produces a thrust and a torque, whose combination 
generates the main trust, the yaw torque, the pitch torque, and he roll torque acting on the quadrotor. Motors produce a force 
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proportional to the square of the angular speed and the angular acceleration; the acceleration term is commonly neglected as the 
speed transients are short thus exerting no significant effects. Motors of a quadrotor can only turn in a fixed direction, so the 
produced force is always positive. Motors are set up so that two opposites form a pair, which turns clockwise, while the other pair 
rotates counter-clockwise.  
This arrangement is chosen so that gyroscopic effects and aerodynamic torques are canceled in trimmed flight. The main trust is the 
sum of individual trusts of each four motor. The pitch torque is a function of difference in forces produced on one pair of motors, 
while the roll torque is a function of difference in forces produced on other pair of motors. The yaw torque is sum off all four motor 
reaction torques due to shaft acceleration and blades drag. The motor torque is opposed by a general aerodynamically drag. 
For a full dynamic model of a quadrotor system both (1) the center of mass position vector of (x,y,z) in fixed frame coordinates and 
(2) the orientation Euler angles: roll, pitch, yaw angles (ϕ, θ, ψ) around body axes X, Y, Z are considered for the vector of 
generalized coordinates q. Using the Euler-Lagrange approach it can be shown how the translational forces Fξ applied to the 
rotorcraft due to main trust can be full decoupled from the yaw, pitch and roll momentsτ: 

  m�
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� + mg �

0
0
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� = Fξ                                                                                                  (1) 

where m is the quadrotor mass and g is the gravitational constant. 
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where 𝕁𝕁 is a 3x3 matrix, called the inertia matrix and C is also a 3x3 matrix that refers to Coriolis, gyroscopic and centrifugal terms. 
Further on, for the scope of this paper we shall address only equation (2) as the quadrotor dynamic model to be identified. 
Proposal 
Equation (2) can be analyzed as three resultant torques iτ  acting along the ith axes respectively asi∈(ϕ, θ, ψ), which using 
Christoffel symbols of the first kindcan be defined as a function of the state vector of Euler angles q = [ϕ, θ, ψ], their velocities (

dt/dqq= ) and accelerations ( dt/qdq  = ) as: 
( )( ) ( )( ) ,qqDqqqD i

j j k
kijkjjij τ=⋅⋅+⋅∑ ∑∑   

i, j, k = 1,2,3.                                              (3) 
The first component of equation (3) is shortly referred to as Jq̈the inertia matrix part, while the second as qC   the Coriolismatrix 
term for which components are defined as: 
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where ijkik D ,D  are in general, highly non-linear scalar functions of the state vector q. They contain sin(.) and cos(.) functions of q, 

and their products and sums defined by the geometry of the system.  
There are general relations that can be used for reducing the number of unknown elements of J and C, like: (1) J is symmetric and 
(2) ijkD  are Christoffel-symbols of ijD [13] thus further properties are inherently defined as: 
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It should be noted that direct measurement of any single component from equation (4) is not possible; the only measurable 
data,on the output of the system, is the resultant torque of equation (3). Identification of all non-linear functions (4) under these 
terms is a considerable problem. 
3. FUZZY-LOGIC SYSTEMS 
Takagi-Sugeno-Kang (TSK) type Fuzzy-logic systems (FLSs) having n inputs and 1 output aredefinedin [14] as: 

( ) ( ) ( ) ( )∑∑
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ω⋅ω=
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ll qqyqqf                                                                                   (6) 
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where M is the number of rules, q is the vector of n input variables, yl is a scalar function of n input variables, defined by (n+1) c 
parameters as in equation (8). The antecedent, the premise part of a fuzzy rule is:  

∏
=
µ=ω

n

1i
iFl )q()q(

)i(l
                                                                         (7) 

where )(
)( iF q

il
µ is the membership function (MF) of the ith input variable in the lth rule that defines the linguistic value Fl(i). The 

linguistic form of the lth rule from the previously described first order TSK FLS is defined in [15] as: 
IF (q1 is Fl(1)) AND (q2 is F l(2)) AND …( qn is F l(n))  
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Zadeh-formed MFs are the z-, the s-, and π -functions (named after their shape) defined respectively as: 
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where 4321 bbbb ≤≤≤ are parameters defining MFs. In case there is more than one value q such that the degree of membership 
of q is equal to one, the interval where 1),( =bqkµ (the interval [b2, b3] for πmf type kµ ) is called the plateau of the kµ MF. When 
having for example 3 naturally ordered linguistic values l∈ {a, b, c} (a = low, b = medium, c = large) constraints on parameters to 
preserve this ordering are: 
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A linguistic variable can be assigned K different linguistic values, each described by a MF ),( bqkµ such that for every input x it holds 

that 1),(
1

=∑ =

K

k k bqµ , the MFs are said to form a fuzzy-partition. Forming fuzzy-partitions by antecedent membership functions 

ensures that there can not be a numerical input within the defined input range that will not result in firing at least one rule 
consequent of the fuzzy model, which means that there is a defined output for all possible input states. Keeping specific properties of 
fuzzy-partitions imposes a set of hard constraints on membership function parameters as detailed in [16]. 
By imposing these restrictions on all linguistic variables of the FLS, and additionally assuming that the rule base is complete in the 
sense that it covers the whole input domain, it immediately follows that the TSK model structure of equation (6) simplifies to: 

∑= ⋅ω= M
1l ll )q(y)q()q(f .                                                                                            (11) 

Automatic fine tuning FLS parameters that satisfies all of above listed constraints is a significant problem. 
PROPOSAL 
In [17] a method is introduced that simplifies parameter optimisation of equation (11) while preserving all required constraints. 
Fuzzy-partitions can be simply formed from Zadeh-typed MFs by making equal the last two parameters of each preceding MF to 
the first two parameters of the succeeding MF. This way a fuzzy partition of K MFs is defined by 1)1K(2 +− parameters. Let our 
input space be normalised (xmin= 0 and xmax= 1). If we do not want to allow any plateaux, parameter b2 must be equal to b3 in 
equation (9) this way the number of parameters is further reduced to 2K− . 
When we take into consideration all constraints of equation (10), we end up with a series of strictly ordered parameters:  

      b1<b2<…<bK-1                                                                     (12) 
Let us add two more constraints:  

     0<b1 and bK-1<1                                                                     (13) 
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Let us define the first MF to be: 
)b,0,x(mfz 1                                                                                  (14) 

Let the Kth, the last MF concluding the fuzzy partition be: 
)1,b,x(mfs 2K−                                                                                      (15) 

Let us define intermediate kth MFs to be: 
)b,b,b,b,x(mf 1kkk1k +−π                                                                                  (16) 

for k = 1, …, 2K− , where b0 = 0 and bK-1=1. This way the ordered series of 2K− bi parameters together with constants 1 and 0 
are the minimal number of parameters to define a fuzzy-partition of Zadeh-formed MFs. 
This minimal number of non-linear parameters is a very important issue for optimisation as over parameterised systems are hard to 
optimise.  
The only problem is that when tuning the non-linear parameters of a FLS having an n dimensional input space, we must comply with 

∑=
n

1i iK pieces of hard constraints.  

Although there are a number of constrained optimisation methods it is obvious that an unconstrained optimisation method would 
be more efficient. Let us consider K-1 pieces of rational, positive or zero parameters as proposed in [11]: 

1K...,,1,Ra 0 −=κ∈ +
κ                                                                              (17) 

When we definebk as: 
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for every k = 1, …, K-2; all the constraints of equation (12) and equation (13) are automatically fulfilled for every κa  from 
equation (18) without any further restrictions on any κa , other than κa≤0 . 
An ANFIS like optimisation, defined in [17] or any other efficient unconstrained nonlinear numerical method can be applied to 
minimise equation (11) error along the κa  parameters. For calculating all linear parameters a linear least square (LS) method can 
be applied to cl(j)parameters of the consequent part. 
To avoid traps of local optimal solutions for κa , a preliminary global search should be applied. 
4. MULTI-OBJECTIVE GENETIC ALGORITHMS 
A genetic algorithm (GA) is constructed on bases of imitating natural biological processes and Darwinian evolution [18]. GAs are 
widely used as powerful global search and optimization tools [18]. Real life optimization problems often have multiple objectives. To 
establish ranking of chromosomes for Gas the comparison of two objective vectors is required. Often a simple weighted sum is used, 
but its drawbacks are widely known [10]. Pareto based comparison [19] is the bases of a few popular methods like Non-dominated 
Sorting GA (NSGA) [8] and Multi-Objective GA (MOGA) [9]. 
A general multi-objective optimization problem consists of n number of scalar minimization objectives where every scalar objective 
function fi(x) is to be minimized simultaneously, where x is an n-dimensional vector of parameters. As maximization can be easily 
transformed to minimization, the generality of the previous statement stands. 
A vector x1 Pareto-dominates x2, when no scalar component of x2 is less than the appropriate component of x1, and at least one 
component of x1is strictly smaller than the appropriate component of x2. Since no metrics can be assigned to Pareto-dominance, 
there have been two different attempts to define a GA ranking method, which can be used for Pareto-dominance vector comparison:  
(1) “Block-type” ranking is defined in [9] as: Rank is equal to 1 + (number of individuals that dominate the ith individual) (2) “Slice-
type” ranking is defined in [8] as: Rank is equal to 1 + (number of turns when the non-dominated individuals are eliminated, needed 
for the ith individual to become non-dominated). 
PROPOSAL 
Quantity-dominance, as proposed in [11] is defined as: vector a=[ai] Quantity-dominates vector b=[bi] if a has more such ai 
components, which are better than the corresponding bi component of vector b, and a has less such aj components, which are worse 
than the corresponding bj. A metrics can be defines as: the measurement of the extent of Quantity-dominance is the difference 
between the number of better and the number of worse components. For a measurement based ranking method the Rank of the ith 
objective vector can be simply defined as the sum of Quantity-dominance measurements for every individual measured from the ith 
vector. This ranking method can be readily applied with Quantity-comparison. 
The proposed vector comparison method provides more information when comparing two vectors than the classic Pareto-based 
comparison, thus the GA is faster, more efficient in its search. The MMNGA algorithm is computationally less expensive, and more 
efficient compared to the classical methods, and its results analyzed on a number of GA hard problems are at least equally good [11]. 
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5. SIMPLE TRAJECTORY 
A simple method for realistic training data acquisition is to define the desired state position vector (x,y,z) with the desired yaw 
rotation angle 𝜓𝜓. As the quadrotor dynamics is very sensitive to jerks, sudden changes inthe third derivatives of state variables, the 
desired state variables will be defined through 𝑞𝑞�jounce (the fourth derivatives of state variables) with continuous functions πmf
from equation (9), like: 

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝜋𝜋(𝑡𝑡, 𝑎𝑎, 8𝑏𝑏) =  �
𝑎𝑎 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 0, 𝑏𝑏, 𝑏𝑏, 2𝑏𝑏), 𝑡𝑡 < 𝑏𝑏

   −𝑎𝑎 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 2𝑏𝑏, 4𝑏𝑏, 4𝑏𝑏, 6𝑏𝑏), 2𝑏𝑏 ≤ 𝑡𝑡 < 6𝑏𝑏
      𝑎𝑎 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 6𝑏𝑏, 7𝑏𝑏, 7𝑏𝑏, 8𝑏𝑏), 6𝑏𝑏 ≤ 𝑡𝑡 < 8𝑏𝑏
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                                           0, 𝑏𝑏 ≤ 𝑡𝑡 < 𝑏𝑏 + 𝑐𝑐
   −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝑡𝑡, 𝑎𝑎, 𝑏𝑏), 𝑏𝑏 + 𝑐𝑐 ≤ 𝑡𝑡 < 2𝑏𝑏 + 𝑐𝑐

 

A general basic smooth jounce function setup to minimise 
jerk and thus results in smooth torque transitions is 
presented in Figure1. 
State variables (x,y,z) and ψ can be calculated by four time 
integration of their jounces. The roll and pitch is equal to: 

𝜙𝜙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 � 𝑥̇𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑦̇𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑥̈𝑥2+𝑦̈𝑦2+(𝑧̈𝑧+𝑔𝑔)2�                                                                                          

(20) 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑥̇𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦̇𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(𝑧̈𝑧 + 𝑔𝑔) � 

PROPOSAL 
The proposal of this paper is to identify Dijinertia matrix 
components of the dynamic model in equation (4) asFLSs 
defined by equations (11) to (18), where the FLS general input variable q will be substituted for the appropriate state variablesof 
(ϕ, θ, ψ). When theDij inertia matrix components are constructed in this way, forming theDijk components as Christoffel symbols is 
to be expressed by partial derivatives of equation (11) like: 
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The unknown inertia matrix components of equation (2) to be identified are: 
D13(θ), D22(ϕ), D23(ϕ, θ), D33(ϕ, θ)                                                         (22) 

Based on quadrotor system structure and inertia matrix symmetry the remaining inertia components are known to be: 
D11 = IX, D12 = 0, D21 = D12, D31 = D13, D32 = D23                                                   (23) 

Based on equation (5) the following Coriolis term matrix components can be calculated by equations (22): 

D122 = − 1
2
δD22
δϕ

, D123 = 1
2
�δD13

δθ
− δD23

δϕ
� , D322 = δD23

δθ
                                                    (24) 

D133 = −
1
2
δD33

δϕ
, D223 =  −

1
2
δD33

δθ
, D312 =

1
2

(
δD23

δϕ
+
δD13

δθ
)  

Remaining Dijk components are trivial identities defined by equation 
(5). 
6. SIMULATION SETUP 
The proposed method is tested for a quadrotor system simulation 
from [2] with parameters as in Table I. 
The training data set is collected from a simulation along a trajectory 
[23-30] with jounce for (x,y,z) and ψ defined so that position changes 
simultaneously along a unit cube main diagonal )1,1,1()0,0,0( − , 
while performing a full circle rotation in jaw motion π20 − . 
The calculated roll, pitch and yaw motions are as presented on Figures 
2, 3 and 4. The simulated resultant torque training data is as 
presented on Figure 5. 

 
Figure 1. A basic jounce function setup 

Table 1. 
Quadrotor parameters 

parameter value unit 
gravity constant, g 9.81 m/s2 

mass, m 6 kg 
torque lever, l 0.3 m 
trust factor, k 121.5e-6  
drag factor, b 2.7e-6  

body inertia along axes X, IX 0.6 kgm2 
body inertia along axes Y, IY 0.6 kgm2 
body inertia along axes Z, IZ 1.2 kgm2 

simulation time, T 3 s 
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Figure 2. Roll training data for input 

 
Figure 3. Pitch training data for input 

 
Figure 4. Yaw training data for input 

 
Figure 5. Torque training data set for otput 

Non-linear Ka parameters of the system are identified in a manner that first the input space is normalised to the unit hyper-cube. 
A set of non-linear parameters consists of six timesfour Ka  integer parameters for defining six fuzzy-partitions of five MFs each, 
where each partition consists of one z-type MF, three π-type MFs and one s-type MF as in (9)-(18). These six fuzzy-partitions serve 
as antecedents for the four fuzzy-systems like in equation (11) and (21), used for identifying Dij, ij=(13, 22, 23, 33) as defined in 
equations(22)-(24) and (5).  
Two unknown linear parameters D11 and D12of the quadrotor model as in equation(23), together with170 linear parameters of the 
four TSK FLSs (2 FLSs with 5 MFs on one input, each rule with 2 c parameters, plus 2 FLSs with 5 MFs on both of the 2 inputs, each 
rule with 3 c parameters)of equations(22) and equations (24) are determined by the SVD-based LS method as used in [20]. 
Concluded from equation (17) six fuzzy-partitions (antecedent part of 2 FLSs with 1 input, plus 2 FLSs with 2 inputs are covered by 
6 independent fuzzy-partitions)are represented by a vector of six times four Ka parameters, which are optimized by a multi-
objective hybrid genetic algorithm as detailed in [11]. Each chromosome evaluation is extended to include an additional round of 
nonlinear LSQ optimization of Ka parameters.Chromosomes are updated before applying further GA operators, so the GA does not 
waste time on local optimization; only global search capabilities of the GA are utilized. Three objectives are set for minimization: (1) 
the root mean square of the torque identification error, (2) the maximum absolute error for any given training data input-output 
pair, and (3) the condition number of the linear system of equations used for LS calculation of linear parameters. 
The GA is set to work on a population of 125, divided into 5 subpopulations with migration rate 0.2 taking place after each 5 
completed generations. Crossover rate, generation gap and insertion rate is 0.8, selection pressure is 1.5. In each generation 4% of 
individuals are subject to mutation, when 1% of the binary genotype is mutated. Individuals, chromosomes are comprised of 24 
Gray-coded integers, each consist of 16 bits. The initial population is set up in a completely random manner. 
Matrix of the linear equation is pre-processed from equation (3), where FLSs like equation (11) and their partial derivatives like 
equation (21) are inserted as described in equations (22)-(24). Unknown linear parameters are D11, D12 and the 170 c parameters of 
fuzzy-rule consequents. 
Evaluation of each individual is done as follows:  
(1) Convert the coded Ka values from the chromosome to bk by equation (18).  
(2) Evaluate all MFs, which will comprise six fuzzy-partitions from each of six bk quadruplets by equations (14)-(16).Also evaluate 
derivatives of equations (14)-(16). 
(3) The pre-processed matrix of the linear equation is evaluated with the MFs. 
(4)Linear components of equations (11) and (21) are calculated by SVD decomposition as described in [21-22]. 
(5) Next the Ka parameters are fine-tuned by the Matlab “lsqnonlin” function,  
(6) MFs are re-calculated for the optimised Ka parameters and all linear parameters are re-calculated.  
(7) Resulting optimised Ka parameters are re-assigned into the chromosome of the evaluated chromosome. 
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For the multi-objective rank assignment described in [11], the objective vector is created from: 
(i) the mean square of the identified torque error,  
(ii) the maximum absolute torque identification error and  
(iii) the condition number of the matrix of the linear equation.  
Stochastic universal sampling is used for selecting the next generation without explicit elitism. To speed up the GA processing, a 
database of evaluated chromosomes and their objective vectors is created, so only unique new individuals are evaluated in each 
generation. 
RESULTS 
Convergence is achieved in some 50 generation evaluations, when the mean square error is in order of 5e-7, the maximum torque 
error is <0.005 Nm. For non-dominated chromosomes the condition number of the used matrix of linear equation isin order of 
1e+38. One typical non-dominated chromosome and the corresponding torque identification error are presented on figures 6 to 10. 
The numerical value of this chromosome is: [61029   8550  10175  18348   6668  22470  11993  57404    608  18024  25310  39946  
26698  53573  39807  47476   1909     46  52007  47288   3712    920  50956   5174], 
which defines fuzzy-partition MF parameters as: 

bi for J13: [0.6221, 0.7093, 0.8130]. 
bi for J22: [0.0677, 0.2957, 0.4174]. 
bi for J23: [0.0072, 0.2221, 0.5238; 0.1593, 0.4791, 0.7167]. 
bi for J33: [0.0189, 0.0193, 0.5330; 0.0611, 0.0762, 0.9148]. 

 
Figure 6. Fuzzy-partition for J13 antecedents 

 
Figure 7. Fuzzy-partition for J22 antecedents 

 
Figure 8. Fuzzy-partition for J23 antecedents Figure 9. Fuzzy-partition for J33 antecedents 

CONCLUSIONS 
Simulation results of the proposed new quadrotor dynamic 
model identification method are promising. The quality of 
identification with the relative torque error being uniformly 
<0.1% is excellent, suitable for taking part in a model 
based control algorithm.  
The typical condition number for used linear parameter 
evaluations is very high for the used training data setup, so 
a more advanced trajectory has to be planned with 
sufficient inertia excitation along the complete input 
domain. Also the FLS structure is to be made flexible, in terms that the GA should be able to turn off unnecessary MFs and thus 
reduce the number of unnecessary rules and linear parameters. 
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