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Abstract: The present study is performed to investigate the effects of radiation on unsteady MHD flow past an exponentially accelerated infinite 
vertical plate with variable temperature and variable mass diffusion.  The flow is induced by a general time-dependent movement of the vertical 
plate, and the cases of isothermal plates are studied. The mathematical model, under the usual Boussinesqs’ approximation, was reduced to a 
system of coupled linear partial differential equations for velocity and temperature. The dimensionless governing equations are solved by the 
Laplace transform method. The effect of concentration, temperature and velocity fields are studied for different parameters like Rotation 
parameter, Hall parameter, Hartmann number, thermal Grashof number, mass Grashof number, Schmidt number, radiation parameter, 
accelerated parameter and time. 
Keywords: Hall Effects, mass diffusion, isothermal, exponential, vertical plate, rotating fluid 
 
1. INTRODUCTION 
The study of natural convection heat transfer from a vertical plate has received much attention in the literature due to its industrial 
and technological applications. Free convection flow involving coupled heat and mass transfer occurs frequently in nature and in 
industrial processes. Magneto hydrodynamic free convective flows along with the effects of heat and mass transfer have considerable 
applications in geophysics; the rotating flow of an electrically conducting fluid in the presence of magnetic field is encountered in 
geophysical fluid dynamics; also in solar physics, involved in the sunspot development, the solar cycle and the structure of rotating 
magnetic stars. Buoyancy is also of importance in an environment where differences between land and air temperatures can give 
rise to complicated flow patterns. The study of hydro magnetic flows and heat transfer have become more important in recent years 
because of its varied applications in agricultural engineering and petroleum industries. Other applications of MHD heat transfer 
include MHD generators, plasma propulsion in astronautics, nuclear reactor thermal dynamics and ionized-geothermal energy 
systems.  
Flow past an exponentially accelerated infinite vertical plate and temperature with variable mass diffusion was found by Asogwa [1] 
and Chandrakala [2] considered the MHD Effects on flow past an exponentially accelerated vertical plate with variable temperature 
and uniform mass diffusion. Rajput and Surendra Kumar [8] have obtained the Rotation and Radiation Effects on MHD flow past an 
Impulsively Started Vertical Plate with Variable Temperature. Vijaya and Ramana Reddy [12] investigated MHD Free convection flow 
past an exponentially accelerated vertical plate with variable temperature and variable mass diffusion. MHD rotating heat and mass 
transfer free convective flow past an exponentially accelerated isothermal plate with fluctuating mass diffusion were studied by 
Jonah Philliph et al.[3]. On flow past a parabolic started isothermal vertical plate with variable mass diffusion in the presence of 
Thermal Radiation were analyzed by Muthucumaraswamy and Lakshmi[4]. Muthucumaraswamy and Visalakshi [6] presented 
radiative flow past an exponentially accelerated vertical plate with variable temperature and mass diffusion. Effect of internal heat 
generation absorption on dusty fluid flow over an exponentially stretching sheet with viscous dissipation, has been recently realized 
by Pavithra [7]. Rajesh

 
and Varma [9] have considered radiation and mass transfer on MHD free convection flow past an exponentially 

accelerated vertical plate with variable temperature. Saraswat Amit and Srivastava [10] studied heat and mass transfer effects on 
flow past an oscillating infinite vertical plate with variable temperature through porous media. Muthucumaraswamy et al [5] 
investigated Mass transfer effects on exponentially accelerated isothermal vertical plate. Uwanta [11] discussed heat and mass 
transfer with variable temperature and mass diffusion. Visalakshi and Vasanthabhavam [13] investigated the skin friction analysis 
of exponentially accelerated vertical plate with variable mass diffusion. 
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The objective of this paper is to study the Magneto hydrodynamic rotating heat and mass transfer free convective flow past an 
exponentially accelerated isothermal vertical plate with variable mass diffusion. The dimensionless governing equations are solved 
using the Laplace-transform technique. The solutions are in terms of exponential and complementary error function. 
2. FORMULATION OF THE PROBLEM AND ITS SOLUTION 
An unsteady hydro magnetic flow of radiating fluid past an exponentially accelerated vertical infinite plate with variable temperature 
and concentration has been presented. A temperature dependent heat source is assumed to be present in the flow. The fluid and the 
plate rotate in unison with a uniform angular velocity Ω′  about the z′ - axis normal to the plate. Initially the fluid is assumed to be 
at rest and surrounds an infinite vertical plate with temperature ∞′T  and concentration ∞′C  . A magnetic field of uniform strength 

0B  is transversely applied to the plate. The x′ -axis is taken along the plate in the vertically upward direction and the z′ - axis is 

taken normal to the plate. At time 2
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, the plate and the fluid are at the same temperature ∞′T  in the stationary condition 

with concentration level ∞′C at all the points. At time 0t >′ , the plate is exponentially accelerated with a velocity )taexp(uu 0 ′′=   

where the constant 0u is the amplitude of the motion, a′  is the accelerating parameter in its own plane and the plate temperature 
and concentration are raised to and wC′ and are maintained constantly thereafter. All the physical properties of the fluid are 
considered to be constant except the influence of the body‐force term. Then under the usual Boussinesqs’ approximation the 
unsteady flow equations are momentum equation, energy equation, and mass equation respectively. 
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Equation of Energy: 
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Equation of diffusion: 
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Since there is no large velocity gradient here, the viscous term in Equation (1) vanishes for small and hence for the outer flow, beside 
there is no magnetic field along x-direction gradient, so we have 
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By eliminating the pressure term from Equations (1) and (5), we obtain 
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The Boussinesq approximation gives             
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On using (7) in the equation (6) and noting that ∞ρ  is approximately equal to 1, the momentum equation reduces to 
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The generalized Ohm's law, on taking Hall currents into account and neglecting ion-slip and thermo-electric effect, is 
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The equation (9) gives 
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where eem τω=  is the Hall parameter. Solving (10) and (11) for xj  and yj , we have  
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On the use of (12) and (13), the momentum equations (8) and (2) become  
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The initial and boundary conditions are given by 
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The local radiant for the case of an optically thin gray gas is expressed by 
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It is assumed that the temperature differences within the flow are sufficiently small such that 4T′  may be expressed as a linear 

function of the temperature. This is accomplished by expanding 4T  in a Taylor series about ∞T  and neglecting higher-order terms, 
thus 
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By using equations (17) and (18), equation (3) reduces to 
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Let us introducing the following non-dimensional quantities 
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Using these boundary conditions in above equations, we obtain the following dimensionless form of the governing equations: 
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The boundary conditions for corresponding order are 
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0U= , 0=V , ,0=θ 0=C  at 0t≤  for all Z  
       0>t , (at) exp=U , 0V= , 1=θ , tC=  at 0Z=                                                                    (24)                                  

0U→ , 0V→ , 0→θ 0C→  as ∞→Z  
 Now equations (20) & (21) and boundary conditions (24) can be combined to give 
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The initial and boundary conditions in non-dimensional quantities are 
0F= , ,0=θ 0=C  for all Z, 0t≤  

      0t > , )atexp(F= , 1=θ , tC=  at 0Z=                                                                                   (28) 
0F→ , 0→θ 0C→  as ∞→Z  

Exact solution for the fluid temperature and concentration of (26), (27) is expressed in the following form by taking inverse Laplace 
transform of solution as 
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The equations (25), (26), (27), subject to the boundary conditions (28), are solved by the usual Laplace-transform technique and the 
solutions are derived as follows: 
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3. RESULTS AND DISCUSSION 
The problem of an exponentially accelerated infinite vertical plate and temperature with variable mass diffusion has been 
formulated, analyzed and solved analytically. The effects of parameters on the velocity, temperature as well as on the concentration 
profiles are studied though graphs. The numerical values of the primary velocity, secondary velocity are computed and are shown 
graphically for different parameters like rotation parameter Ω , Hartmann number M, Hall parameter m, radiation parameter R, 
thermal Grashof number Gr , mass Grashof number Gc, Schmidt number Sc, accelerating parameter a and time t. The value of Sc 
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(Schmidt number) is taken to be 0.6 which corresponds to the water vapour. Also, the value of Pr (Prandtl number) are chosen such 
that they represent air (Pr=0.71) at 200 C at 1 atmosphere.  
Figure 1 represents the effect of the concentration profiles for different values of Schmidt number. It is observed that at time t=0.2 
decreases with increase in the values of Sc. Figure 2 shows the temperature profile for different values of thermal radiation 
parameter(R=0.2, 0.2, 2.0, 5.0) and time (t=0.2, 0.6, 0.2, 0.2).It is observed that the temperature increases with decreasing radiation 
parameter and the temperature increases with increase of time t. 

 
Figure1. Concentration profiles for different values of Sc 

 
Figure 2. Temperature profiles for different values of R and t 

 
Figure 3. Primary velocity profiles for several values of  Ω 

 
Figure 4. Secondary velocity profiles for several values of  Ω 

In figure 3 the primary velocity profile for different Ω when Sc=0.6, Pr=0.71, a=0.1, t=0.2,M=0.5, m=0.5, Gr=5, Gc=5, R=5 has 
been presented and it is observed that the primary velocity U falls when Ω are increased. In figure 4 the secondary velocity profile for 
different Ω when Sc=0.6, Pr=0.71, a=0.1, t=0.2,M=0.5, m=0.5, Gr=5, Gc=5, R=5 has been presented It is observed from figure 4 
secondary velocity increases as Ω increases. 

 
Figure 5: Primary velocity profiles for several values of M 

 
Figure 6: Secondary velocity profiles for several values of M 

From figure 5 it is clear that the primary velocity increases with decreasing values of the Hartmann number (M). Figure 6 show that 
due to an increase in the Hartmann number M, the secondary velocity increases when Sc=0.6, Pr=0.71, a=0.1,t=0.2, Ω=0.1, 
m=0.5, Gr=5, Gc=5, R=5. Figure 7 and 8 represents the velocity profiles for various values of m when Sc=0.6, Pr=0.71, a=0.1, 
t=0.2, Ω=0.1, M=0.5, Gr=5, Gc=5, R=5. It is observed from figure 7 that the primary velocity rises due to increasing value of the 
Hall parameter m. It is found that from figure 8 due to an increase in the Hall parameter, m, there is rise in the secondary velocity 
components. 
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Figure 7. Primary velocity profiles for several values of m 

 
Figure 8. Secondary velocity profiles for several values of m 

 
Figure 9. Primary velocity profiles for several values  

of Gr and Gc 

 
Figure10. Secondary velocity profiles for several values  

of Gr and Gc 
In the figure 9 and 10 it is observed that the primary and secondary velocity increases with increasing values of the thermal Grashof 
number or mass Grashof number when Sc=0.6, Pr=0.71, a=0.1, t=0.2, Ω=0.1, M=0.5, m=0.5, R=5. From figure 11 it is clear that 
the primary velocity increases with decreasing values of radiation parameter. Figure12 show that due to an increase in the radiation 
parameter, the secondary velocity increases when Sc=0.6, a=0.1, t=0.2, Pr=0.71, Ω=0.1, M=0.5, m=0.5, Gr=5, Gc=5. 

 
Figure 11. Primary velocity profiles for several   values of R 

 
Figure12. Secondary velocity profiles for several values of R 

 
Figure 13. Primary velocity profiles for several values of Sc 

 
Figure14. Secondary velocity profiles for several values of Sc 
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In figure13 it is observed that the primary velocity increases with decreasing values of Schmidt number (Sc).In figure 14.it is observed 
that the secondary velocity increases with increasing values of Schmidt number Sc when Pr=0.71, a=0.1, 
R=5,t=0.2,Ω=0.1,M=0.5,m=0.5,Gr=5,Gc=5. The velocity profiles for different values of time t when Pr=0.71,R=5, 
a=0.1,Sc=0.6, Ω=0.1, M=0.5, m=0.5, Gr=5, Gc=5 are presented in figure 15, 16. It is observed that the primary velocity and 
secondary velocity increases with increasing values of t. 

            
Figure15. Primary velocity profiles for several   values of t 

 
Figure16. Secondary velocity profiles for several values of t 

          
Figure17. Primary velocity profiles for several  values of ‘a’ 

 
Figure18. Secondary velocity profiles for several values of ‘a’ 

The velocity profiles for different ‘a’ when Pr=0.71, Sc=0.6, Ω=0.1, M=0.5, m=0.5, Gr=5,Gc=5, R=5, t=0.2 are studied and 
presented in figure 17, 18. It is evident from figures that the primary velocity and secondary velocity increases with increasing values 
of ‘a’. 
4. CONCLUSIONS 
An analysis is performed to study the radiation effects on unsteady MHD flow past an exponentially accelerated infinite vertical plate 
in the presence of variable temperature and uniform mass diffusion. The effects of thermo physical parameters on velocity, 
temperature and concentration are analyzed and the following observations were noticed. The dimensionless governing equations 
are solved by the usual Laplace transform technique. The effects of different parameters such as  rotation parameter Ω , Hartmann 
number M, Hall parameter m , radiation parameter R, thermal Grashof number Gr , mass Grashof number Gc, Schmidt number Sc, 
accelerating parameter a and time t have been investigated. In the analysis of the flow the following conclusions are made. The 
concentration increases with decreasing values of the Schmidt number.The temperature increases with decreasing radiation 
parameter. The axial velocity rises due to increasing value of the Hall parameter, accelerating parameter, thermal Grashof number 
and mass Grashof number and time. The axial velocity u falls when Ω are increased, the velocity increases with decreasing values of 
the Hartmann number, the radiation parameter. Transverse velocity increases as Ω increases, due to an increase in the Hartmann 
number M, the Hall parameter, m, accelerating parameter, the radiation parameter R, Gr, Gc, Sc and t. 

NOMENCLATURE 

0B - external magnetic field(T) 

t  -  dimensionless time 
t′ -  dimensional time, s 
T -  dimensionless temperature, K 
T ′ -dimensional temperature of the fluid 
C - dimensionless fluid concentration 
C′ -dimensional concentration in the fluid, kg m-3 

B


- the magnetic field vector 
E


- the electric field vector 
q - the velocity vector 

eω - the cyclotron frequency 

M - Hartmann number 
m - Hall parameter 
R - Radiation parameter 
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a -  dimensionless accelerating parameter 
a′ - dimensional acceleration parameter 

*a - absorption coefficient  
u  - velocity of the fluid in the x ‐ direction, m s-1   
v  - velocity of the fluid in the z ‐ direction 
z  - dimensionless co-ordinate normal to the plate.  
U - dimensionless axial component of the  velocity of the fluid 
V - dimensionless transverse component of the velocity of the fluid 
Z - dimensionless coordinate axis normal to  the plate 

0u - velocity of the plate, m s-1 

Ω - dimensionless angular velocity 
Ω′ - component of angular velocity(rad/s) 
p - pressure 
g - acceleration due to gravity 

j


- the current density vector 
xj yj, - the components of the current density j


 

pC - the specific heat at constant pressure, J kg-1 k 

rq - the radiative heat flux in the z – direction 

D - mass diffusion coefficient, m2 s-1 
k - thermal conductivity, W m-1 k-1 

Pr - Prandtl number 
Sc - Schmidt number 
Gr - Thermal Grashof number 
Gc - Mass Grashof number 
Subscripts  
w -conditions at the wall  
∞ -free stream conditions 
Greek symbols 
ρ - Fluid density, kg m-3 
ϑ - Kinematic Viscosity, m2 s-1 

eτ - the collision time of electron 

θ - Dimensionless temperature 
η - Similarity parameter 
σ - Electric conductivity Electric 
      conductivity 
β - Volumetric coefficient of thermal expansion, K-1 

β ′ - Volumetric coefficient of expansion with concentration, K-1 

γ - 
volumeconstant at heat specific 
pressureconstant at heat specific 

 

erfc ‐ Complementary error function 
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