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Abstract: The problem of some thermo-physical properties on free convective heat and mass transfer of reacting flow over a vertical plate in the 
presence of viscous dissipation is investigated. The governing partial differential equation is transformed to a coupled nonlinear ordinary 
differential equation with the help of similarity variables. Two special cases are analysed under some assumptions and the resulting coupled 
nonlinear ordinary differential equations for both cases is solved numerically by shooting method along with Runge-Kutta fourth order 
technique. The effects of thermo-physical parameters on velocity and temperature are shown graphically while numerical data for the local skin 
friction coefficient and Nusselt number have been tabulated for various values of certain parameters. 
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1. INTRODUCTION 
Free convective flow driven by temperature differences is of great interest in a number of industrial applications. There has been 
increasing need for the continuous study of the behaviour of free convective flow under several phenomena due to its wide range of 
applications in the field of Science and Technology. This is a flow which plays an important role in agriculture, engineering and 
petroleum industries. The problem of free convection under the influence of magnetic field has attracted many researchers in view 
of its application in geophysics, astrophysics, geological formations, and thermal recovery of oil, and in assessment of aquifers, 
geothermal reservoirs and underground nuclear waste storage site, etc. Researchers are motivated by the fact that free convection 
appears to be increasingly important due to its various applications in applied sciences, engineering, industries and technology as 
nuclear reactors, heat exchangers, solar powers, oceanography, cooling applications, fossil fuel combustion energy processes, 
astrophysical flows, satellites, solar power technology, space vehicle re-entry, etc. In most of the existing works in literature, many 
investigations dealing with heat flow and mass transfer have been reported by a considerable number of researchers. Heat and mass 
transfer characteristics and flow behaviour on magneto-hydrodynamics (MHD) flow near the lower stagnation point of a porous 
isothermal horizontal circular cylinder was studied by Ziya and Manoj [1]. Their result showed that velocity increases with viscosity 
parameter, while temperature decreases with the same parameter. Also, both velocity and temperature decreases with increase in 
radiation and increases with increase in thermal conductivity. Basant [2], considered the effects of applied magnetic field on transient 
free-convective flow in a vertical channel. His result showed that as magnetic parameter increases, velocity decreases, while it 
increases with increase in time (𝑡𝑡). Mansuor et al. [3] considered a steady two dimensional nonlinear MHD boundary layer flow of 
an incompressible, viscous and electrically conducting fluid in the presence of a uniform magnetic field with heat, mass transfer and 
chemical reaction in a porous medium. The fluid properties were assumed to be constant. The results showed that the flow field was 
influenced appreciably by the presence of chemical reaction, viscous dissipation and suction or injection flow. Kishore et al. [4] 
investigated the unsteady free convection flow of an incompressible viscous fluid past an exponentially accelerated vertical plate, by 
taking into account the heat due to viscous dissipation under the influence of a uniform transverse magnetic field. Their investigation 
showed that velocity increases with increase in thermal Grashof number, accelerated parameter, Eckert number and time. While 
temperature increases with increasing values of Eckert number and time. Gideon and Eletta [5] discussed viscous dissipation effect 
on the flow through a horizontal porous channel with temperature dependent viscosity. It was observed that high Darcy number 
leads to a higher velocity and that velocity is parabolic while reversal flow takes place at low Darcy number. The use of Arrhenius 
equation in kinetics for many fluids, have been reported for countless industrial and engineering processes like geological materials, 
liquid foams, polymeric fluids, slurries, hydrocarbon oils and grease. Also, its applications in a number of technological processes 
include the production of polymer films or thin sheets, wire drawing, fiberglass and paper production. Steady Arrhenius laminar free 
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convective MHD flow and heat transfer past a vertical stretching sheet with viscous dissipation was studied by Omowaye and Koriko 
[6] and their results indicated that velocity and temperature profile increases with increase in local Grashof number and Eckert 
number. Omowaye and Ayeni [7], studied unsteady MHD free convection flow and heat transfer along an infinite vertical porous 
plate under Arrhenius kinetics. Their studied showed that velocity of the fluid decreases with the increase in Prandtl number and 
Hartmann number but increases with increase in Grashof number. While, temperature decreases with increase in Prandtl 
number.Thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an 
inclined plane was studied by Makinde [8]. His investigation revealed that an increase in the material parameter enhances the 
thermal stability of the liquid and his series summation procedure can be used as an effective tool to investigate several other 
parameter-dependent nonlinear boundary-value problems in science and engineering. Galwey and Brown [9] studied the 
application of the Arrhenius equation to the kinetics of solid state reactions. Galwey [10] further looked into a general and critical 
analysis of theories used to interpret those thermochemical rate measurements that are directed towards investigations of the 
mechanism of chemical changes that result from the heating of initially solid reactants. Analytical solutions for the problem of heat 
and mass transfer by steady flow of an electrically conducting and heat generating/absorbing fluid on a uniformly moving vertical 
permeable surface in the presence of a magnetic field of first order chemical reaction was studied by Chamkha [11]. His result showed 
that fluid velocity decreased as Prandtl number, the Schmidt number and the strength of the magnetic field was increased but 
increased as thermal and concentration buoyancy effects were increased. 
Takhar et al. [12] studied the effect of thermophysical quantities on the natural convection flow of gases over a vertical cone and 
effects of some thermo-physical properties on force convective stagnation point on a stretching sheet with convective boundary 
conditions in the presence of thermal radiation and magnetic field.Khaleque and Samad [13] studied the effects of radiation, heat 
generation and viscous dissipation on MHD free convection flow along a stretching sheet. Mohyud-Din et al. [14] investigated 
modified Variational Iteration Method (MVIM) for free-convective boundary-layer equation using Padé approximation. In the 
literature, the problem of variable thermal conductivity, magnetic field effect and the reacting fluid flow with laminar free convection 
flow over a vertical plate has not been adequately dealt with to our best of knowledge. Hence, the need to study the effects of the 
physical features for the free convective flow problem and give the numerical solution of the problem, which allows us to critically 
analyse the physical features of our problem to providing better and efficient results in the model. 
2. GOVERNING EQUATIONS 
Consider a steady two-dimensional laminar free convective flow of a viscous, incompressible fluid over a vertical plate with variable 
thermal conductivity and magnetic field effects. The 𝑥𝑥-axis is taken along the vertical plate in the upward direction and the 𝑦𝑦-axis 

is normal to the plate. The schematic representation of the problem under consideration is shown 
in figure 1. The fluid is reacting and a uniform magnetic field is applied normal to the flow field. 
Under the Boussinesq’s approximation [14], the modified partial differential governing mass, 
momentum and energy equation is given as follows: 
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where 𝜕𝜕, 𝜕𝜕 are the velocity components in 𝑥𝑥, 𝑦𝑦 directions respectively, 𝜌𝜌 is density of the fluid, 𝑐𝑐𝑝𝑝  is the specific heat capacity at 
constant pressure, 𝜐𝜐 is the kinematic viscosity, 𝑔𝑔 is the acceleration due to gravity, 𝜎𝜎 is electrical conductivity, 𝑇𝑇 is temperature of 
the fluid, 𝑔𝑔 and 𝑔𝑔0 are coefficient of volumetric expansion and magnetic field intensity, 𝜅𝜅(𝑇𝑇) is variable thermal conductivity of 
the fluid, 𝐴𝐴 is the pre-exponential (frequency) factor, 𝐴𝐴 is heat release, 𝐸𝐸 is the activation energy, 𝑅𝑅 is the universal gas constant 
and 𝜇𝜇 is the fluid viscosity coefficient. The boundary conditions for the velocity and temperature fields are: 

𝜕𝜕 = 0    𝜕𝜕 = 0     𝑇𝑇 = 𝑇𝑇𝑤𝑤    𝑎𝑎𝑡𝑡   𝑦𝑦 = 0                                                       (4) 
𝜕𝜕 → 0       𝑇𝑇 → 𝑇𝑇∞       𝑎𝑎𝑎𝑎       𝑦𝑦 → ∞                                                        (5) 

where 𝑇𝑇𝑤𝑤  is the wall dimensional temperature and 𝑇𝑇∞ is free stream dimensional temperature. 
Introducing the stream function 𝜓𝜓(𝑥𝑥, 𝑦𝑦), equation (1) is satisfied. Equations (2) and (3) with boundary conditions (4) and (5) 
reduces to 
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Figure 1: Schematic 

representation of the problem 
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In this research, the fluid thermal conductivity 𝜅𝜅 is assumed to vary as a linear function of temperature is assumed. Variation of the 
normalized thermal conductivity is written in the form (Elbashbeshy and Ibrahim [15], Seddeek and Abdelmeguid [16]) as: 

𝜅𝜅(𝑇𝑇) = 𝜅𝜅∗[1 + 𝛾𝛾𝛾𝛾]                                                                  (9) 
where 𝜅𝜅∗ is the ambient fluid thermal conductivity and 𝛾𝛾 is a constant depending on the nature of the fluid. In order to resolve the 
governing partial differential equations (6) and (7) along with the boundary conditions (8), the following dimensionless quantities 
are introduced 
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using (10), equations (6) and (7) subject to the boundary conditions (8) reduces to 
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on simplification of equations (11) and (12), the dimensionless governing equations for momentum, energy and their boundary 
conditions are obtained. Hence, the coupled nonlinear ordinary differential equations: 

𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ + 𝐺𝐺𝐺𝐺𝛾𝛾 − 𝑀𝑀𝑓𝑓′ = 0                                                               (13) 
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The corresponding boundary conditions are 

𝑓𝑓 = 0, 𝑓𝑓′ = 0, 𝛾𝛾 = 1        𝑎𝑎𝑡𝑡          𝜂𝜂 = 0 
𝑓𝑓′ = 0,    𝛾𝛾 = 0                                    𝑎𝑎𝑎𝑎     𝜂𝜂 → ∞
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where prime denotes the differentiation with respect to 𝜂𝜂, 𝑓𝑓 is the dimensionless velocity and 𝛾𝛾 the dimensionless temperature, 

𝛾𝛾 = 𝛿𝛿(𝑇𝑇𝑤𝑤 − 𝑇𝑇∞) is the thermal conductivity variation parameter of the flow,  𝐺𝐺𝐺𝐺 = 2𝑥𝑥𝑥𝑥𝑥𝑥(𝑅𝑅𝑤𝑤−𝑅𝑅∞)
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the flow. The physical quantities of principal interest are the skin friction coefficient 𝐶𝐶𝑓𝑓  and Nusselt number 𝑁𝑁𝜕𝜕 given as: 
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3. SPECIAL FORMS OF THE GOVERNING EQUATION 
Special forms of some of the governing equations are investigated when dealing with certain types of fluid flow. 
3.1. Case I 
In this case, the following assumptions are introduced into the dimensionless governing equations (13) and (14): 
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(i) 𝛿𝛿 ≠ 0 and (ii) 𝐸𝐸𝑐𝑐 = 0 
The governing equations become 

𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ + 𝐺𝐺𝐺𝐺𝛾𝛾 − 𝑀𝑀𝑓𝑓′ = 0                                                               (16) 

[1 + 𝛾𝛾𝛾𝛾]𝛾𝛾′′ + 𝛾𝛾𝛾𝛾′2 + 𝑃𝑃𝐺𝐺𝑓𝑓𝛾𝛾′ + 𝛿𝛿𝐴𝐴𝑥𝑥𝑝𝑝�
𝜃𝜃

𝜀𝜀𝜃𝜃+1�  = 0                                         (17) 
the corresponding boundary conditions (15). 
3.1.1. Numerical Computation 
In this section, the set of equations (16) and (17) under the boundary conditions (15) are solved numerically by applying the Runge-
Kutta fourth order scheme along with shooting method. 
Let 𝑓𝑓 = 𝑦𝑦1,  𝑓𝑓′ = 𝑦𝑦2, 𝑓𝑓′′ = 𝑦𝑦3, 𝛾𝛾 = 𝑦𝑦4, 𝛾𝛾′ = 𝑦𝑦5. Hence, equations (16) and (17) are transformed into a system of 
first order differential equations as follows: 

𝑦𝑦1′ = 𝑦𝑦2; 
𝑦𝑦2′ = 𝑦𝑦3 

𝑦𝑦3′ = −𝑦𝑦1𝑦𝑦3 − 𝐺𝐺𝐺𝐺𝑦𝑦4 + 𝑀𝑀𝑦𝑦2                                                                (18) 
𝑦𝑦4′ = 𝑦𝑦5 

𝑦𝑦5′ =
1

1 + 𝛾𝛾𝛾𝛾
�−𝑃𝑃𝐺𝐺𝑦𝑦1𝑦𝑦5 − 𝛾𝛾𝑦𝑦52 − 𝛿𝛿𝐴𝐴𝑥𝑥𝑝𝑝�

𝑦𝑦4
𝜀𝜀𝑦𝑦4 + 1�� 

subject to the following initial conditions: 
𝑦𝑦1(0) = 0,𝑦𝑦2(0) = 0,𝑦𝑦3(0) = 𝑎𝑎1,𝑦𝑦4(0) = 1,𝑦𝑦5(0) = 𝑎𝑎2                                   (19) 

The unspecified initial conditions 𝑎𝑎1 and 𝑎𝑎2 are guessed.Numerical computation on the behaviour of the physical parameters 
𝐺𝐺𝐺𝐺,𝑃𝑃𝐺𝐺,𝑀𝑀, 𝜀𝜀 and 𝛿𝛿 are calculated including the skin-friction 𝑓𝑓′′(0) and the Nusselt number −𝛾𝛾′(0). 
3.1.2. Discussion of Results 
The problem of magnetic field and variable thermal conductivity 
on laminar free convective heat flow and mass transfer over a 
reacting vertical plate is considered. The governing parameters 
are the local Grashof number 𝐺𝐺𝐺𝐺, Prandtl number 𝑃𝑃𝐺𝐺, activation 
energy 𝜀𝜀, magnetic field parameter 𝑀𝑀, modified Frank-
Kamenetskii parameter 𝛿𝛿 and thermal conductivity variation 
parameter 𝛾𝛾. To illustrate the behaviour of these physical 
quantities on the velocity and temperature profile, numerical 
values were computed with respect to the variations in the governing parameters and the analysis are presented graphically. 
From table 1, the numerical values of 𝑓𝑓′′(0) and 𝛾𝛾′(0) for different values of dimensionless parameters 𝑃𝑃𝐺𝐺, 𝐺𝐺𝐺𝐺, 𝑀𝑀, 𝜀𝜀, 𝛾𝛾 and 𝛿𝛿 
indicates that skin friction coefficient 𝑓𝑓′′(0) increases with increasing values in 𝛾𝛾, 𝐺𝐺𝐺𝐺 and 𝛿𝛿 but decreases with increasing values 
in 𝑃𝑃𝐺𝐺, 𝑀𝑀 and 𝜀𝜀. More so, the Nusselt number coefficient −𝛾𝛾′(0) decreases as 𝑃𝑃𝐺𝐺, 𝜀𝜀 and 𝐺𝐺𝐺𝐺 increases but increases with 
increasing values in 𝑀𝑀, 𝛾𝛾 and 𝛿𝛿. The parameters of the flow 𝛾𝛾, 𝑃𝑃𝐺𝐺, 𝑀𝑀 and 𝐺𝐺𝐺𝐺 can be taken as follows (Loganathan et al. [17], 
Elbashbeshy [18], Reddy and Reddy [19], Kishore et al. [4]): 0.7 ≤ 𝑃𝑃𝐺𝐺 < 7.0, 0.5 ≤ 𝛾𝛾 < 6, 0.5 < 𝑀𝑀 ≤ 2.5, 1 ≤
𝐺𝐺𝐺𝐺 ≤ 7. 
The effect of magnetic field parameter 𝑀𝑀 on the velocity 𝑓𝑓′ and temperature 𝛾𝛾 of the flow with variable magnetic field parameter 
𝑀𝑀(1, 1.5, 2, 2.5), 𝐺𝐺𝐺𝐺 = 1, 𝑃𝑃𝐺𝐺 = 0.72, 𝜀𝜀 = 0.1, 𝛾𝛾 = 0.5 and 𝛿𝛿 = 0.01 is illustrated in figures 2 – 3. From figure 2, 
it is observed that velocity decreases as the magnetic parameter increases, but in figure 3, temperature 𝛾𝛾 increases as 𝑀𝑀 increases 
in the vicinity of the plate. 
The effect of variable Grashof number 𝐺𝐺𝐺𝐺 for heat transfer on the velocity of the flow with 𝐺𝐺𝐺𝐺(1, 3, 5, 7), 𝑀𝑀 = 1.5, 𝑃𝑃𝐺𝐺 =
0.72, 𝜀𝜀 = 0.1, 𝛾𝛾 = 0.5 and 𝛿𝛿 = 0.01 is presented in figure 4. It is observed that velocity initially increases along 𝑦𝑦 away 
from the plate with increasing values of 𝐺𝐺𝐺𝐺 and later decreases towards the plate but gradually increases afterwards towards the 
free stream. Figure 5 show the effect of 𝐺𝐺𝐺𝐺 for heat transfer on the temperature profile. It shows that 𝛾𝛾 decreases towards the plate 
with increasing values of Grashof number. 
The effect of Prandtl is important in velocity and temperature profile. Figures 6 and 7 depict the effect of Prandtl number 𝑃𝑃𝐺𝐺 on 
velocity and temperature profiles respectively. It is observed that velocity and temperature decreases with increasing values in 𝑃𝑃𝐺𝐺 
for 𝑃𝑃𝐺𝐺 (0.72, 2, 4), 𝑀𝑀 = 1.5, 𝐺𝐺𝐺𝐺 = 1, 𝜀𝜀 = 0.1, 𝛾𝛾 = 0.5 and 𝛿𝛿 = 0.01. 
Figure 8 shows the velocity distribution for different values of activation energy 𝜀𝜀. It is observed that velocity and temperature 
decreases with increasing values of activation energy 𝜀𝜀 as shown in figure 9. 
 
 

Table 1: Numerical values of 𝑓𝑓′′(0) and 𝛾𝛾′(0) for various values 
of the governing parameters 

𝛾𝛾 𝑃𝑃𝐺𝐺 𝐺𝐺𝐺𝐺 𝑀𝑀 𝜀𝜀 𝛿𝛿 𝑓𝑓′′(0) −𝛾𝛾′(0) 
0.5 
2.0 
0.5 
0.5 
0.5 
0.5 
0.5 

0.72 
0.72 

4 
0.72 
0.72 
0.72 
0.72 

1 
1 
1 
7 
1 
1 
1 

1.5 
1.5 
1.5 
1.5 
2.5 
1.5 
1.5 

0.1 
0.1 
0.1 
0.1 
0.1 
1.5 
0.1 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.08 

0.6700 
0.7078 
0.5740 
3.6731 
0.5588 
0.6682 
0.7709 

0.2149 
0.1547 
0.3649 
0.4502 
0.1807 
0.2201 
0.0147 
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Figure 2: Velocity profile for different values of 𝑀𝑀 

 
Figure 3: Temperature profile for various values of 𝑀𝑀against 𝜂𝜂 

 
Figure 4: 𝑓𝑓′ profile against 𝜂𝜂 for various values of 𝐺𝐺𝐺𝐺 

 
Figure 5: Temperature profile for different values of 𝐺𝐺𝐺𝐺 

 
Figure 6: Velocity profile for different values of 𝑃𝑃𝐺𝐺 

 
Figure 7: Temperature profile for various values of 𝑃𝑃𝐺𝐺 

 
Figure 8: Velocity profile for different values of 𝜀𝜀 

 
Figure 9: Temperature profile for different values of 𝜀𝜀 

 
Figure 10: Velocity profile for various values of 𝛿𝛿 

 
Figure 11: Temperature profile for various values of 𝛿𝛿 

 
Figure 12: Velocity profile for variable thermal conductivity 

against 𝜂𝜂 

 
Figure 13: Temperature profile for variable thermal 

conductivity against 𝜂𝜂 
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The effect of velocity and temperature profile for different values of modified Frank Kamenetskii parameter is shown in figures 10 
and 11. It is observed that velocity and temperature profiles increases with increasing values of modified Frank Kamenetskii 
parameter 𝛿𝛿. From the diagram, the rate of increase is spontaneous as it provides a convenient comparative measure of reactivity 
an of the temperature coefficient of reaction rate. 
The velocity and rate of heat transfer of temperature for thermal conductivity variation parameter over the vertical plate is displayed 
in figures 12 and 13 respectively. From figure 12, it is observed that with increasing values in 𝛾𝛾 parameter, the velocity profile 
increases away from the plate towards the free stream values. Likewise, as the variable thermal conductivity increases, temperature 
also increases with a decreasing boundary layer towards the free stream values as shown in figure 13. 
3.2. Case II 
For this case, we define some parameters in the dimensionless equations (13) and (14) by the following expressions 
(i) 𝛿𝛿 = 0 and (ii) 𝐸𝐸𝑐𝑐 ≠ 0 
The governing equations become 

𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ + 𝐺𝐺𝐺𝐺𝛾𝛾 −𝑀𝑀𝑓𝑓′ = 0                                                                 (20) 
[1 + 𝛾𝛾𝛾𝛾]𝛾𝛾′′ + 𝛾𝛾𝛾𝛾′2 + 𝑃𝑃𝐺𝐺𝑓𝑓𝛾𝛾′ + 𝑃𝑃𝐺𝐺𝐸𝐸𝑐𝑐𝑓𝑓′′2  = 0                                                    (21) 

subject to the boundary conditions (15). 
3.2.1. Numerical Computation 
Here, the same numerical approach in Case I is applied to equations (20) and (21) under the boundary conditions (15). 
Let 𝑓𝑓 = 𝑦𝑦1,  𝑓𝑓′ = 𝑦𝑦2, 𝑓𝑓′′ = 𝑦𝑦3, 𝛾𝛾 = 𝑦𝑦4, 𝛾𝛾′ = 𝑦𝑦5.The governing equations are transformed into a system of first order 
differential equations as follows: 

𝑦𝑦1′ = 𝑦𝑦2 
𝑦𝑦2′ = 𝑦𝑦3 

𝑦𝑦3′ = −𝑦𝑦1𝑦𝑦3 − 𝐺𝐺𝐺𝐺𝑦𝑦4 + 𝑀𝑀𝑦𝑦2                                                           (22) 
𝑦𝑦4′ = 𝑦𝑦5 

𝑦𝑦5′ =
1

1 + 𝛾𝛾𝛾𝛾
�−𝑃𝑃𝐺𝐺𝑦𝑦1𝑦𝑦5 − 𝛾𝛾𝑦𝑦52 − 𝑃𝑃𝐺𝐺𝐸𝐸𝑐𝑐𝑦𝑦32� 

subject to the following initial conditions: 
𝑦𝑦1(0) = 0,𝑦𝑦2(0) = 0,𝑦𝑦3(0) = 𝑎𝑎1,𝑦𝑦4(0) = 1,𝑦𝑦5(0) = 𝑎𝑎2                                 (23) 

3.2.2. Discussion of Result 
For the purpose of discussing the effects of various parameters on the flow 
profiles and the temperature distribution within the boundary layer, analysis has 
been carried out for various values of 𝑃𝑃𝐺𝐺, 𝐺𝐺𝐺𝐺, 𝑀𝑀,  𝛾𝛾 and 𝐸𝐸𝑐𝑐. The values for the 
parameters are taken from Loganathan et al. [17], Elbashbeshy [18], Reddy and 
Reddy [19], Kishore et al. [4] respectively. The numerical results for the prescribed 
parameters 𝛾𝛾,𝐺𝐺𝐺𝐺,𝑀𝑀,𝑃𝑃𝐺𝐺 and 𝐸𝐸𝑐𝑐 is presented in figures 14 – 23. 
Numerical values for heat transfer rate and skin friction are presented in tables 2 
and 3.It is observed that increase in 𝐸𝐸𝑐𝑐, 𝛾𝛾, 𝐺𝐺𝐺𝐺 and 𝑀𝑀 increases the rate of heat 
transfer but decreases with increasing values of 𝑃𝑃𝐺𝐺 as shown in table 2. For table 
3, the numerical values for skin friction �𝐶𝐶𝑓𝑓� coefficient is presented. 
The effects of the prescribed parameter on the skin friction �𝐶𝐶𝑓𝑓� coefficient 
shows that increase in 𝑃𝑃𝐺𝐺 and 𝑀𝑀 lead to a decrease in skin friction but increases 
with increasing values in 𝐸𝐸𝑐𝑐, 𝛾𝛾 and 𝐺𝐺𝐺𝐺. The velocity profile for various values of 
Prandtl number is shown in figure 14. Also, as the velocity increases, it increases 
to a peak and begins to decrease exponentially to zero thereby satisfying 
boundary conditions. The result shows that velocity decreases with increase in 
𝑃𝑃𝐺𝐺. While increase in 𝐺𝐺𝐺𝐺 leads to an increase in velocity indicating that buoyancy force assists the flow (Omowaye and Koriko [6], 
Chamkha [11]) as presented in figure 15. In figure 16, velocity decreases with increase in magnetic parameter thereby acting against 
the flow in the normal direction if applied and also, stabilizes the magnetic field. From figure 17, the result shows that as velocity 
increases, Eckert number increases also. 
Temperature profiles for local Grashof number, Prandtl number, magnetic field parameter and Eckert number are presented in figures 
18 – 21. It is reported in figure 18 and 19, that temperature (𝛾𝛾) decreases with increase in 𝑃𝑃𝐺𝐺 and 𝐺𝐺𝐺𝐺. Figure 20 and 21, shows 
that increase in the magnetic parameter and Ecker number lead to increase in temperature (𝛾𝛾) profile and it shows that 𝐸𝐸𝑐𝑐 has 

Table 2: Numerical values for heat transfer  
rate 𝛾𝛾′(𝜂𝜂) 

𝛾𝛾 𝑃𝑃𝐺𝐺 𝐺𝐺𝐺𝐺 𝑀𝑀 𝐸𝐸𝑐𝑐 𝛾𝛾′(𝜂𝜂) 
0.5 
2.0 
0.5 
0.5 
0.5 
0.5 

0.72 
0.72 
7.0 

0.72 
0.72 
0.72 

1 
1 
1 
3 
1 
1 

1.5 
1.5 
1.5 
1.5 
2.5 
1.5 

1 
1 
1 
1 
1 
3 

- 0.1806 
- 0.1328 
- 0.3083 
0.0774 

- 0.1735 
- 0.0450 

 Table 3: The rate of shear stress in terms  
of skin friction (𝐶𝐶𝑓𝑓) 

𝛾𝛾 𝑃𝑃𝐺𝐺 𝐺𝐺𝐺𝐺 𝑀𝑀 𝐸𝐸𝑐𝑐 𝐶𝐶𝑓𝑓  
0.5 
2.0 
0.5 
0.5 
0.5 
0.5 

0.72 
0.72 

7 
0.72 
0.72 
0.72 

1 
1 
1 
3 
1 
1 

1.5 
1.5 
1.5 
1.5 
2.5 
1.5 

1 
1 
1 
1 
1 
3 

0.6662 
0.7058 
0.5152 
1.9140 
0.5529 
0.6881 
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significant effect on the boundary layer growth and plays an important factor for heat transfer. Hence, from figures 14 – 21, 
temperature profile increases with increase in 𝑀𝑀 and 𝐸𝐸𝑐𝑐, while it decreases with increase in 𝑃𝑃𝐺𝐺 and 𝐺𝐺𝐺𝐺. Similarly, velocity 
decreases with increase in 𝑃𝑃𝐺𝐺 while 𝑓𝑓′(𝜂𝜂) increases with 𝐺𝐺𝐺𝐺, 𝑀𝑀 and 𝐸𝐸𝑐𝑐 increasing also. Velocity and temperature profiles for 
variable thermal conductivity against 𝜂𝜂 are shown in figures 22 and 23. It is observed that as 𝛾𝛾 increases in value, both velocity and 
temperature increases also away from the plate towards the free stream values. 

 
Figure 14: Velocity profile for various values of  𝑃𝑃𝐺𝐺 

 
Figure 15: Velocity profile for different values of  𝐺𝐺𝐺𝐺 

 
Figure 16: Velocity distribution against 𝜂𝜂 for various  𝑀𝑀 

 
Figure 17: 𝑓𝑓′(𝜂𝜂) against  𝜂𝜂 for different values of  𝐸𝐸𝑐𝑐 

 
Figure 18: Temperature profile for various values of 𝑃𝑃𝐺𝐺 

 
Figure 19: Temperature against 𝜂𝜂 for different values of  𝐺𝐺𝐺𝐺 

 
Figure 20: Temperature 𝛾𝛾 against 𝜂𝜂 for various values of  𝑀𝑀 

 
Figure 21: Variation at different values of 𝐸𝐸𝑐𝑐 for 

temperature profile 
 

 
Figure 22: Velocity profile for thermal conductivity variation 

 
Figure 23: Temperature profile for thermal conductivity 

variation 
4. CONCLUSION 
The problem on effects of some thermo-physical properties on free convective heat and mass transfer of a reacting fluid flow vertical 
plate is considered. The governing partial differential equations of the problem, using similarity transformations, were reduced to a 
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couple nonlinear differential equations and solved numerically using Runge-Kutta fourth order method with shooting technique. 
The main objective is to obtain a modified model for free convective flow over a vertical plate and numerical solution for the problem 
as well as establish and discuss the thermo-physical properties of the problem. To this end, the resulting coupled nonlinear ordinary 
differential equations (13) and (14) subject to the boundary conditions (15) was investigated under two cases and the following 
conclusions were drawn: 

i). Skin-friction increases with increase in local Grashof number, variable thermal conductivity and modified Frank-Kamenetskii 
parameter but, decreases with increasing values in Prandtl number, magnetic parameter and activation energy in Case I. Similarly, 
increase in Prandtl number, activation energy and Grashof number, leads to a decrease in the value of Nusselt number but increases 
with increase in magnetic, variable thermal conductivity and modified Frank-Kamenetskii parameters respectively in Case I. 

ii). In case II, increasing values in Eckert number, thermal conductivity variation, local Grashof number and magnetic field parameters, 
also increases the rate of heat transfer but decreases with increasing values in Prandtl number. Also, from case II, the skin friction 
coefficient increases with increasing values in 𝐸𝐸𝑐𝑐, 𝛾𝛾 and 𝐺𝐺𝐺𝐺 but decreases with increase in values of 𝑃𝑃𝐺𝐺 and 𝑀𝑀 
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